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EXECUTIVE SUMMARY 
The primary goal of this effort is to bring to maturity a select set of basic 

algorithms, hardware, and approaches developed under the Integrated Sensing and 
Processing (ISP) Phase I program, implement them on representative hardware, and 
demonstrate their performance in a realistic field environment. We have identified a few 
promising research thrusts investigated in ISP Phase I where field demonstrations are cost 
prohibitive but collected data sets are available. Here, we will conduct a thorough 
performance evaluation.  
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0. Technical Abstract 

Advances in sensor technologies, computation devices, and algorithms have 
created enormous opportunities for significant performance improvements on the modern 
battlefield. Unfortunately, as information requirements grow, conventional network 
processing techniques require ever-increasing bandwidth between sensors and processors, 
as well as potentially exponentially complex methods for extracting information from the 
data. To raise the quality of data and classification results, minimize computation, power 
consumption, and cost, future systems will require that the sensing and computation be 
jointly engineered. ISP is a philosophy/methodology that eliminates the traditional 
separation between physical and algorithmic design. By leveraging our experience with 
numerous sensing modalities, processing techniques, and data reduction networks, we 
will develop ISP into an extensible and widely applicable paradigm. The improvements 
we intend to demonstrate here are applicable in a general sense; however, this program 
will focus on distributed sensor networks and missile seeker systems. 

1.0. Management Overview and Summary 

1. A. Program Summary 
The Raytheon Company, Missile Systems (Raytheon) ISP Phase II program is a 

twenty-four month contract with a Period of Performance (PoP) covering 1 March 2005 
to 28 February 2007. Raytheon has four universities and one small business as ISP Phase 
II subcontractors: Arizona State University (ASU); Fast Mathematical Algorithms and 
Hardware (FMAH); Georgia Institute of Technology (Georgia Tech); Melbourne 
University (UniMelb) and the University of Michigan (UM). 
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1. B. Program Status 
The Raytheon ISP Phase II Program status can be summarized as remaining “on 

track.” All of the negotiations have been completed and all of the subcontractors are now 
under subcontract. However, we have incurred some schedule slips on both the 
distributed tracking and the Cooperative Analog Digital Signal Processing (CADSP) 
demonstrations. An updated schedule for the distributed tracking demonstration has been 
developed and is included in Section 2.0. While the revised schedule still supports a 
demonstration before 28 February, there is little room for further slippage. The current 
status of the CADSP imager hardware is discussed in Section 2.A.6. 

The Program is still running below the spending plan; however, we expect to 
complete the contract on time and budget. As of 20 January 2006, 31% of contract funds 
had been expended with ~45% of the program complete. In part, the contract expenditure 
reflects an under-run due to delays in receiving invoices from our subcontractors. 
Raytheon has also under-run significantly. Initially the reduced Raytheon spending was 
to better align with the subcontractor schedules; however, we have also encountered 
difficulties with personnel availability. We believe that we have the Raytheon personnel 
availability issue resolved and should recover from the spending profile deviation.  

One area of significant concern is the availability of a suitable radar test and 
integration engineer. We continue to work this issue, but have not been successful so 
far. Failure to resolve this problem soon is probably the highest risk for our program. 

1. C. Personnel Associated/Supported 

Raytheon 
Dr. Harry A. Schmitt    Principal Investigator 
Mr. Donald E. Waagen   Co-Principal Investigator 
Dr. Sal Bellofiore    Distributed Sensing Lead 
Mr. Thomas Stevens    Distributed Sensing Support 
Dr. Robert Cramer    Mathematical Support 
Mr. Craig Savage    Waveform Design and Control Lead  
Dr. Nitesh Shah    High Dimensional Processing Data Lead 

FMAH 
Professor Paolo Barbano 
Professor Ronald Coifman 
Dr. Nicholas Coult 

ASU 
Professor Darryl Morrell 
Professor Antonia Papandreou-Suppappola  

Georgia Tech 
Professor David Anderson  
Professor Paul Hasler 

UniMelb 

Dr. Barbara LaScala 
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Professor William Moran 
Dr. Darko Musicki 
Dr. Sofia Suvorova 

UM 
Professor Al Hero 
Dr. Neal Patwari 

Significant Personnel Actions: There was one significant personnel change during the 
current PoP. Dr. Neal Patwari of the University of Michigan became actively involved in 
developing self localization approaches for the MICA-2/Z distributed tracking 
demonstration. 

1. C. Recent Accomplishments and Events 
In support of the distributed processing demonstrations and evaluations, Neal 

Patwari (UM) spent a week at Raytheon in November 2005 to discus self localizations 
approaches for the motes. Raytheon presented an overview of the mechanics of working 
with the Algorithms Verification Units (AVUs), installed the software necessary to 
program the AVUs and spent several days working with UM on implementation. Four of 
the AVUs were delivered to UM in December 2005. The remaining AVUs are available 
for distribution to other university personnel when needed.  

An amended Technical Assistance Agreement (TAA) was approved by the U.S. 
State Department on 6 October 2005. The amended TAA expands the technical scope to 
cover the research areas added under the ISP Phase II program, adds two dual citizens at 
UniMelb, and also covers Raytheon, Australia. The amended TAA has been signed by 
UniMelb and is out for signature by the remaining parties. 

Other Accomplishments and Events: 
 Raytheon personnel (Waagen and Schmitt) visited Georgia Tech 16 November to 

discuss current hardware and algorithm status. 

 Raytheon personnel (Waagen, Schmitt and Samuel) visited University or 
Maryland on 15 November to discuss waveform design research being conducted 
by Professor John Benedetto.  

 Raytheon personnel (Waagen, Schmitt and Samuel) met with Professor Stuart 
Milner, Director of the Center for Networking of Infrastructure Sensors to discuss 
possible collaboration opportunities. 

 Delivered report on mathematical foundation of FMAH waveform family design.  

1. D. Near Term Events 
 Dr. T.J. Klausutis (AFRL, Eglin) will visit Georgia Tech to discuss possible 

collaborative opportunities. In particular, there may be an opportunity to get the 
Georgia Tech CADSP imager included in ARFL test plans. AFRL, Eglin is 
particularly interested in learning more about the capabilities and maturity of the 
CADSP imager. As yet, we have been unable to confirm a date for this visit. 

 Attend the DARPA Waveforms for Active Sensing (WAS) Program Review 
Meeting will be held March 14, 2006 in Portland, Oregon. 
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 Present “Cooperative Control of Multiple UAVs for Passive Geolocation,” at the 
Special Session on Cooperative Dynamic Systems, 2006 IEEE International 
Conference on Networking, Sensing and Control, Ft. Lauderdale, FL. 

2.0. Technical Progress and Accomplishments 
Again, most of the effort expended during the current PoP has been in the areas of data 
collection, sensor characterization, mathematical analyses, and algorithm development 
for the distributed tracking demonstration. Key technical focus areas include: 

 The development, implementation and evaluation of accurate and scaleable sensor 
self-localization approaches. 

 Data collection for MICA-2/Z sensors characterization. The focus was on 
characterizing the acoustic sensors with the goal of developing a 1-bit on-mote 
detection algorithm.  

 Preliminary characterization of the vibration sensor was continued. 
 The development of distributed tracking algorithms at UniMelb. The refinement 

of the final tracking demonstration. 

We have also expended significant effort in the following technical evaluation areas. 
 Evaluation of High Dimensional Data Processing of collected field data. 
 The investigation of mathematically rigorous approaches for the critical problem 

of handling out-of-sample extensions for High Dimensional Data Processing. 

 Stochastic approaches for UAV control and passive geolocation.  

 Algorithm definition and hardware development/test for the implementation and 
demonstration of the Georgia Tech CADSP imager. 

Significant effort has gone into the development and refinement of a detailed test plan for 
the distributed tracking demonstration. While we still expect this to evolve some over 
time, the schedule show in Table 1 is a pretty firm baseline. These technical focus areas 
are discussed in significantly more detail in Subsection 2.A, where the technical 
approaches for Raytheon and for each subcontractor are described. Preliminary 
experimental results are also summarized.  

2. A. Technical Progress  
2.A.1. Raytheon Technical Progress 
2.A.1.a. Distributed Sensor Demonstration 

Wireless low-power sensor networks have gained much deserved attention in 
many research fields. With the advent of low-cost digital signal processors, wireless 
sensor networks have begun to emerge in many applications. The majority of military 
applications, including our particular choice of tracking of personnel though a field of 
distributed sensors, possess a common core of signal processing functions. Because such 
sensor networks will be laid down in an ad hoc configuration consisting of thousands of 
sensor nodes, accurate and scalable algorithms are critical. The algorithms and 
approaches that we are developing under ISP Phase II are thus expected to have wide 
applicability. For example, we are working closely with the Raytheon group that is 
demonstrating shooter localization under DARPA Information Exploitation Office (IXO) 
Networked Embedded System Technology (NEST) program. Self-localization is a 
significant computation challenge for NEST and an opportunity for technology transfer. .  
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Distributed Tracking Demonstration Preliminaries 
We now provide a high level overview of the distributed tracking demonstrations. 

We divide the demonstration into a series of tasks that are critical for the demonstration 
and a set of tasks that would provide additional capability but are not critical to the 
accomplishing the demonstration. We refer to these latter tasks as “Extras.” As illustrated 
in Figure 1, the distributed tracking demonstration consists of three functional blocks: (i) 
self-localization of the motes; (ii) 1-Bit on-mote detector; and (iii) base station tracker. 
These three functional blocks are discussed in more detail below and flow into a schedule 
as shown in Table 1. 
 Detector 

on Motes 
(MICA2) 

Self-Localization Tracker 
on Base Station 

Figure 1: Demonstration Block Diagram 

Self-Localization: 
•  Survey – If available self-localization algorithms do not produce accurate enough 

results, we should just localize motes by survey them.  
•  [Extra] Acoustic Ranging – VU algorithm currently gives reasonable results for 

inter-mote distance of 9 ft. For inter-mote distance higher than 9 ft, parameters 
need to be tweaked to reduce error in measured ranges.  

•  RIPS – The code needs to be installed onto MICA2’s. We may require permission 
to obtain UNCLASSIFIED code since it was developed under NEST program. 
Once installed, we need to make measurements behind M09 and evaluate results 
accuracy. Accuracy should be better than Acoustic Ranging Algorithm. 
o Drawbacks 

 [Extra] Current scheduling during data collection is too exhaustive and 
time consuming to make this a practical algorithm. For example, for only 
16-mote network, data collection takes anywhere from 30 to 40 minutes. 
UniMelb wants to take this problem to improve scheduling by making only 
necessary measurements. 

 [Extra] Once measured data is collected, motes are localized using a 
Genetic Algorithm (GA). GA’s are known to be computationally intensive 
(thus, slow to converge to a solution), and they do not always converge. 
UM will investigate replacing the GA with a more reliable and faster 
algorithm such as the steepest descent. 

•  [Extra] RSSI – Determine the accuracy of this Received Signal Strength (RSS) 
algorithm from UM. Also, make sure UM can implement it on MICA2’s.    

Detector (1-bit): 
We next briefly discuss our detector development. The baseline demonstration will use a 
1-Bit detector (target detected or not). This choice of detector implementation is driven 
by the network being so constrained in its communication capability. As shown in Figure 
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2, the detector is composed of four functional blocks: (i) Sensor Characterization; (ii) 
Signal Filtering; (iii) Energy Computation; and (iv) Threshold Calculation. For our 
scenario or tracking people through the network, sensor characterization consists of 
developing the acoustic signature of footsteps. Filtering is next performed to improve the 
Signal to Noise Ratio. A threshold is then set to produce the 1-Bit output of target 
detected or not. These four functional blocks are discussed in more detail below and 
again flow into a schedule as shown below. 
Task # Task Description System Component Performer From To Duration (week) Bonus/Mandatory

1 Interface Specification Document (Matlab/nesC) ISD All 2/20/2006 3/3/2006 1.57 M
Motes Self-Localization (Acoustic Ranging) Localization Thom/Sal ------ 5/31/2006 2 B
Motes Self-Localization (RIPS) Localization Bob/Sal ------ 5/31/2006 2 B
Motes Self-Localization Data Collection Improvement (RIPS) Localization Craig/UniMelb ------ 5/31/2006 4 B
Motes Self-Localization GA Replacement (RIPS) Localization Bob/Michigan ------ 5/31/2006 4 B
Motes Self-Localization Implementation/Evaluation (RSSI) Localization Bob/Michigan ------ 5/31/2006 2 B

2 Sensor Characterization (Microphone) Acoustic Model/ROC's Detector Sal/ASU 2/13/2006 2/27/2006 2 M
Sensor Characterization (Accelerometer) Vibration Model/ROC's Detector Sal/Thom ------ 4/17/2006 2 B
Sensor Characterization (Magnetometer) Magnetic Model/ROC's Detector Sal/Thom ------ 4/17/2006 2 B

3 Filter Acoustic Footstep (Microphone) Detector Sal/ASU 2/27/2006 3/20/2006 3 M
Filter Vibration Footstep (Accelerometer) Detector Sal/Thom ------ 4/17/2006 2 B
Filter Magnetic Noise (Magnetometer) Detector Sal/Thom ------ 4/17/2006 2 B

4 Energy Computation (Microphone) Detector Sal/ASU 3/20/2006 3/27/2006 1 M
Energy Computation (Accelerometer) Detector Sal/Thom ------ 4/17/2006 1 B
Energy Computation (Magnetometer) Detector Sal/Thom ------ 4/17/2006 1 B

5 Threshold (Microphone) Detector Sal/ASU 3/27/2006 4/3/2006 1 M
Threshold (Accelerometer) Detector Sal/Thom ------ 4/17/2006 1 B
Threshold (Magnetometer) Detector Sal/Thom ------ 4/17/2006 1 B

6 Transmit 1-bit Detection Detector Sal/ASU 4/3/2006 4/17/2006 2 M
7 Tracker Single Target (Particle Filter) Tracker Sal/Thom/ASU 4/17/2006 5/31/2006 6.28 M

Tracker Unknown Number of Targets (Particle Filter) Tracker Sal/ASU 2/1/2006 5/31/2006 17 B
8 Tracker (UniMelb) Tracker Craig/UniMelb 4/20/2006 5/31/2006 5.85 M
9 Detector/Tracker Integration Integration All 5/31/2006 6/30/2006 4.28 M
10 Motes Localization (Survey) Localization Bob/Thom/Sal 11/27/2006 12/1/2006 0.57 M
11 Full Dress Rehersal Test Testing Bob/Thom/Sal 12/4/2006 12/15/2006 1.57 M  

 

Sensor(s) 
Characterization 

Filter Energy 
Computation

Threshold 

Figure 2: Detector Block Diagram 

•  Sensor(s) Characterization 
o Microphone (acoustic) 

 Person Walking – Determine ROC’s to determine detector parameters, and 
motes network topology. 

o Accelerometer 
 [Extra] Person Walking – Determine if the sensor is capable of sensing 

vibration above noise floor on outdoor ground. If so, determine ROC’s to 
determine detector parameters, and motes network topology.    

o Magnetometer 
 [Extra] Person Walking with Metal/Cell Phone – Determine if sensor can 

sense Metal or Cell Phones magnetic field. If so, determine ROC’s to 
determine detector parameters, and motes network topology.   

•  Filter 
o Microphone (acoustic) 

 Person Walking – Develop Digital Filter similar to VU Acoustic Ranging 
Algorithm. The filter needs to be a Low-Pass. ASU will determine the 
frequency range of the filter. 
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o Accelerometer 
 [Extra] Filtering can be ignored since vibrations are assumed to come only 

from people walking for the demo. 
o Magnetometer 

 [Extra] Filtering can be ignored unless interference from Earth Magnetic 
Field or Magnetic Noise in the area affect detector.     

•  Energy Computation 
o It can be extracted or be similar to VU Acoustic Ranging Code 

•  Threshold 
o Determine threshold based on ROC’s. 

•  Transmit Detection. 
o 1 – Target Detected 
o 0 – Target Not Detected 

Tracker: 
•  Received Data – Receive detected/not detected data from each mote. 
•  Track – Track target using: 

o Particle Filter 
o Australian Tracker 

Software: 
•  Matlab – Use Matlab to integrate Demo components and display tracker’s 

graphics/results. 
•  NESC – Use to implement Localization and Detector algorithms on MICA2’s. 

Interface Specification Document: 
In the next few weeks, we should have an Interface Specification Document 

describing the signals, variables, etc., needed at the interface of each component of 
Figure 1. This document will describe, for example, the data and signals that detector 
needs to provide to the tracker.  
Summary: 

Figure 3 represents the final demonstration. It will have 40 to 100 sensors (S1, …, 
Sn) detecting a target and possibly multiple targets. There will be one or more Base 
Stations depending on the number of available trackers. The Base Stations (trackers) will 
graphically show the target location using Matlab interface 
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S1 

S3 

S2 

S4 

Sn-1

Sn

S5 

… 

Tracker 1 

Tracker 2 
[Extra] 

Figure 3: Demonstration Representation 

The focus of Raytheon’s technical efforts in support of the distributed tracking 
demonstration for the current PoP is self-localization. 

The baseline self-localization algorithm relies on acoustic ranging and was 
developed by Vanderbilt University (VU). The concept of this algorithm is based on 
measuring the time of arrival (TOA) of the sound signal between the signal source 
(actuator) and the acoustic sensor. VU has also developed an approach that uses radio 
frequency instead of acoustic frequency and should significantly improved localization 
accuracy. Both algorithms rely on a genetic algorithm-based optimization approach 
which scales very poorly with the number of sensor nodes. We have evaluated the 
acoustic self-localization algorithm and found acceptable performance for an inter-mote 
spacing of ~3m. There are indications from the NEST program, that performance should 
be maintained out to ~10m and this is under investigation. As an alternative to the VU 
self-localization approach, we are investigating graph based algorithms motivated by 
concepts we are exploring for the processing of high dimensional data. Preliminary 
results are presented next and in the UM technical section. 

2.A.1.b. Distributed Sensor Self-Localization 
As described in previous quarterly reports for ISP phase II, self-localization is a 

key component of a wide variety of distributed wireless sensing applications, including 
perimeter monitoring, detection and tracking of targets, and shooter localization. Because 
such sensor networks will be laid down in an ad hoc configuration consisting of large 
numbers of sensor nodes, accurate and scalable localization algorithms are critical to the 
success of defense or homeland security applications. 

The current generation of shooter localization algorithm is an acoustic ranging 
algorithm introduced by workers at Vanderbilt University (VU). The concept of this 
algorithm is based on measuring the time of arrival (TOA) of the sound signal between 
the signal source (actuator) and the acoustic sensor. The acoustic ranging algorithm has 
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demonstrated localization accuracy sufficient for a proof-of-principle, and VU is 
developing an approach that should significantly improve localization accuracy. This new 
approach uses radio frequency instead of acoustic frequency for the ranging algorithm 
[Maroti, et al. 2005], and should provide more accurate localization with larger networks 
since radio waves propagate further than acoustic waves. However, both the baseline and 
improved VU self-localization algorithms rely on an optimization approach based on 
genetic algorithms, which scale very poorly with the number of sensor nodes. Genetic 
algorithms (GA) suffer from slow convergence, as well as being awkward to implement 
in a distributed manner. This approach was selected only as a “first cut” by the research 
group at VU, and as currently implemented the computation is carried out on a base 
station (laptop computer), not distributed among the sensor nodes. Thus, improvement in 
the self-localization implementation is clearly needed, and we are working towards 
fulfillment of this goal. 

In order to replace the GA approach to localization using acoustic TOA 
measurements, we have chosen to implement a version of “distributed, weighted multi-
dimensional scaling” (dwMDS) algorithm, introduced by workers at the University of 
Michigan [Costa et al 2006]. “Classical” multi-dimensional scaling, or MDS, is a well-
known algorithm, which has been popular for many years, and is a method of assigning a 
coordinate system to a group of objects for which we have some measure of “similarity” 
between pairs of objects. In the self-localization application, the similarity measurements 
comprise distances between pairs of nodes, and the MDS algorithm is well-suited to 
computing the coordinates of the nodes, up to an isometry, that is a rigid translation 
and/or rotation and/or reflection. To remove the ambiguity, it is necessary to have a few 
nodes for which the coordinates are known from outside measurements. These nodes are 
commonly called “anchor nodes,” and may be equipped with GPS, for example. As they 
are expensive, it is desirable to employ only a small number of them. The smallest 
number theoretically possible for removing the ambiguity in three dimensions is four; the 
number is 1+d  if the dimension of the underlying coordinate space is d . Since MDS can 
compute the coordinates for each node without knowing the exact locations of any of the 
nodes, the information from the anchor nodes can be utilized after this part of the 
computation has been completed, in the form of a simple matrix multiplication and/or 
vector addition applied to each coordinate vector. However, it may be more efficient to 
incorporate this prior information during computation of the coordinates, and classical 
MDS is not particularly well-suited to incorporating this additional information. 
Furthermore, classical MDS requires knowledge of all pair-wise distances between 
nodes, and is not applicable if only some of the pair-wise distances are known, for 
example between nearest neighbors. In addition, due to the presence of noise, it may be 
advantageous to weight the distance measurements differently, to reflect their different 
levels of reliability. This classical MDS also cannot do. The dwMDS algorithm 
overcomes all of these deficiencies, and we are currently implementing this algorithm for 
use in the distributed sensor network using either TOA or received signal strength (RSS) 
measurements. 

 In addition to TOA or RSS measurements, we also have available a form of radio 
interferometer measurements, due to a method introduced by the researchers at VU 
[Maroti, et al. 2005]. None of the usual approaches to self-localization are suitable for 
using these measurements directly, as they are not pair-wise distances, but a combination 
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of four pair-wise distances. The measurement is made by using two nodes as transmitters 
and two nodes as receivers. The transmitters emit radio signals at slightly different 
frequencies, and the phase difference of the beat frequency is measured at the two 
receivers. After a bit of post processing to estimate the number of wavelengths required 
to reach the receivers, what we obtain is 

    ddddR jljkikilijkl −+−=  ,                                            (1) 

where ),( ji  are transmitters, ),( lk  are receivers, and d ij
 is the pair-wise distance 

between nodes i and j . We refer to the radio interferometer measurements on the left-
hand side of (1) as RIMs. Since the beginning of the year we have been studying the form 
of the RIMs, to decide what can be done to replace the genetic algorithm approach here. 
That it is desirable to do so is due to the fact that the radio measurements are more 
accurate than RSS, and are more reliable over a longer distance than acoustic TOA 
measurements, if these are used for localization (acoustic TOA would still be used for 
shooter localization or tracking algorithms, the localization part is a separate issue). 

The principle difficulty with RIMs, ignoring any potential issues with noise, etc., is that 
the number of independent measurements is only 2/)3( −NN , where N is the number of 
nodes. This has been proved in [Meertens 2005]. The number of pair-wise distances on 
the right-hand side of (1) is 2/)1( −NN , hence there is a null space of dimension N . This 
means that any attempt to solve the system of equations consisting of all measurements 
(1) will fail, since the right- and left-hand sides of (1) can be made to agree, even with 
estimates of the positions of the nodes which are far from the true positions. This is due 
to the fact that the system is under-determined. To overcome this difficulty it will be 
necessary to design an algorithm which utilizes additional information, that is, in addition 
to the RIMs measurements. N. Patwari at University of Michigan has suggested a 
combination of RIMs and RSS measurements [Patwari 2006], and it seems to us that this 
is a very good idea. Such an approach is currently under investigation and we hope to 
report favorable results soon.  

2.A.1.c. Evaluation of Distribution-Free Divergence Measurements 
Introduction 

In working with reconfigurable or agile sensors capable of producing different 
feature sets, it is useful to quantify which feature sets provide the best opportunity to 
discriminate and classify targets of interest. When there are more than approximately 5 
features, the feature set comparisons take on a “high-dimensional” nature. Limited 
sample support in high-dimensional spaces leads to the well known “curse of 
dimensionality.” Distribution-based comparisons of feature-set efficacy are prone to 
error, whether the distribution estimation is based on density-building using kernels or 
fitting parameters in a predefined model. There are some methods available for 
distribution-free, approximate measurement of feature-set divergence (or separability). In 
the two-class case, the measurement of feature-set efficacy can be recast in terms of the 
general multivariate two-sample problem. The underlying assumption is that independent 
of any classifier, feature sets that exhibit more divergence (or separability) should in 
general be of greater utility than feature sets that exhibit less divergence (or separability). 
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Assume we are given two independent dℜ -valued random vectors 
1

,,1 nXX K  and 

2
,,1 nYY K , with the distribution of iX  having the unknown pdf ( )xf  and the distribution of 

iY  having the unknown pdf ( ).xg  The multivariate two-sample problem is to test the 
hypothesis: gfH =:0 versus the general alternative. For the multivariate case, several 
approximate distribution-free methods are known, including: 

1) αJensen Rényi Divergence [Hero et al. 2002] 
2) Henze-Penrose Divergence [Henze & Penrose 1999], [Friedman & Rafsky 1979] 
3) Henze-Schilling Statistic [Henze 1988], [Schilling 1986] 
4) Euclidean Interpoint Distance Test [Baringhaus & Franz 2004], [Székely & Rizzo 

2004]; Statistical Energy Test [Aslan & Zech 2005] 
5) αGeometric-Arithmetic Mean Test [Neemuchwala & Hero 2005] 
6) αMutual Information Test [Neemuchwala & Hero 2005] 
7) Dwyer-Squire Test [Dwyer & Squire 1993] 
8) Change Point Test [Ferger 2000]. 
9) Location-Scale Test [Rousson 2001] 
10) Incomplete Multivariate Observations Test [Wei & Lachin 1984] 

The first three techniques are considered here; the remaining will be evaluated in future 
work. 

The two feature sets being compared are composed of unit-variance normal 
distributions, with differing means, dimensionality and sample size (assumed throughout 
to be the same for the two feature sets, 21 nn = ). We are testing against location 
alternatives; in future work we will test against scale alternatives, as well as use different 
types of random distributions. In Figure 4 we show some examples of d=2 feature sets 
composed of unit-variance normal distributions with mean separations varying from 0 
units to 8 units, for a fixed sample size .50021 == nn  In Figure 5 we show some examples 
of d=2 feature sets composed of unit-variance normal distributions with a fixed mean 
separation of 3 units, for sample sizes of .4000,500,10021 == nn  We repeat each 
experiment ten times, and report the mean and standard deviation of the divergence 
estimate. 

αJensen Rényi Divergence 
The αJensen Rényi Divergence uses the Rényi entropies of the individual feature 

sets and compares them with the Rényi entropy of the combined feature set:  

( ) ( ) ( ) ( )( ) ( ) ( ) .ln
1

1;5.0, dzzffHgHfHgfHgfH
z
∫−

≡+−+≡∆ α
ααααα α

 

The individual Rényi entropies are estimated, in an asymptotic manner, using the 
minimal spanning tree (MST) of a graph having power-weighted edges connecting the d-
dimensional sample nodes. There is one free parameter, .10 <<α  This parameter is 
related to the power weighting exponent, γ, and the dimensionality d in the following 
manner: ( ) .1 αγ −= d  Values of α close to 0 produce large exponents. This amplifies the 
effects of the longest edge length, thus tending to emphasize tail differences between the 
two distributions. Values of α close to 1 produce small exponents. This provides similar 
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treatment to different values of edge lengths, thus tending to emphasize central 
differences between the two distributions (where many more edges are present).  

offset: 0 offset: 1 offset: 2

offset: 3 offset: 4 offset: 5

offset: 6 offset: 7 offset: 8

offset: 0 offset: 1 offset: 2

offset: 3 offset: 4 offset: 5

offset: 6 offset: 7 offset: 8

 
Figure 4: Examples of two-class feature set distributions for d=2, n1=n2=500. The 
distributions are drawn from unit-variance normals, with means offsets varying from 0 
units to 8 units as labeled. 

n1=n2=100 n1=n2=500 n1=n2=4000n1=n2=100 n1=n2=500 n1=n2=4000

 
Figure 5: Examples of two-class feature set distributions for d=2, n1=n2=100, 500, 4000. 
The distributions are drawn from unit-variance normals having a mean offset of 3 units. 

We first examine the behavior of αH∆  for fixed value α=0.5, for two unit-
variance normals whose means are separated by various amounts, and for various sample 
sizes. Each scenario is repeated with 10 realizations of the sample sets, and the mean and 
standard deviations of αH∆  are shown in Figure 6 for d=2 and in Figure 7 for d=20. It 
appears that for d=2, the asymptotic results are approaches with a few thousand samples 
in each feature set, but for sample sizes < 500, there is substantial variability and overlap 
in divergence values for different amounts of feature-set separation, and the measures 
have not reached the large-sample-size asymptotic values. For d=20, it appears that even 
with several thousand samples in each feature set, the asymptotic values have not been 
achieved for large separation values, and for sample sizes < 500 there is much 
inconsistency (including a negative bias for low-separation estimates of 0≥∆ αH ). 
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Figure 6: Approximate αJensen Rényi Divergence values for two unit-normal 
distributions (d=2) with different mean separations, as a function of sample size, for 
α=0.5 (mean and std plotted for 10 realizations). 

We next fix 200021 == nn and vary α for d=2 and d=20, again using unit-variance 
normal distributions with differing amounts of mean separation. Results are shown in 
Figure 8 for d=2 and Figure 9 for d=20. Note that for low separation values, there is not 
much sensitivity to either α or d. For large separation values, there is a dependence on α 
that becomes stronger as d increases. This is to be expected, as the edge lengths in the 
MST are power-weighted by the exponent ( ) .1 αγ −= d  For larger values of d and smaller 
values of α, the power–weighting exponent is larger, emphasizing the maximum edge 
length. For separated distributions, this corresponds to the edge-to-edge distance between 
the two clusters.  
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Figure 7: Approximate αJensen Rényi Divergence values for two unit-normal 
distributions (d=20) with different mean separations, as a function of sample size, for 
α=0.5 (mean and std plotted for 10 realizations). 
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Figure 8: Approximate αJensen Rényi Divergence values for two unit-normal 
distributions (d=2) with different α values, as a function of mean separation, for sample 
size = 2000 samples in each distribution (mean and std plotted for 10 realizations). 
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Figure 9: Approximate αJensen Rényi Divergence values for two unit-normal 
distributions (d=20) with different α values, as a function of mean separation, for sample 
size = 2000 samples in each distribution (mean and std plotted for 10 realizations). 

Henze-Penrose Divergence 
Friedman and Rafsky [Friedman & Rafsky 1979] report a distribution-free 

generalization of the Wald-Wolfowitz runs statistic. The feature sets 
1

,,1 nXX K  and 

2
,,1 nYY K  are pooled, and the Minimal Spanning Tree (MST) of the resulting data set is 

formed. In the simplest form of the test, count the number R of MST edges that join 
nodes from different samples. In a further refinement, Friedman & Rafsky allow usage of 
multiple orthogonal MSTs. In this case, count the number S of edges in the multiple 
orthogonal MSTs that join nodes from different samples. A prescription is given for 
estimating the expected mean and variance of R or S under the null hypothesis gfH =:0 , 
allowing the estimation of the z-score of R or S as a measure of the violation of the null 
hypothesis. Henze and Penrose [Henze & Penrose 1999] show that asymptotically in the 
sample size, the statistic R can be related to ( ),,, pgfδ  a particular measure of 

distributional divergence (where 
21

1

nn
n

p
+

=  ): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ } ( ) .1,,1;

1
1,, 22

2222

≤≤−+
−+
−+

≡ ∫ pgfppdx
xgpxpf

xgpxfppgf δδ  

In the case where ,21 nnn ==  we have p=0.5 so 0.5 ≤ δ ≤1, and 
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( ) .
2

1lim,, 





 −=

∞→ n
Rpgf

n
δ  

Henze and Penrose do not comment on a connection between ( )pgf ,,δ and S. It appears 
plausible (we will investigate in future work) that one can use S for estimating ( ),,, pgfδ  
for ‘small’ values of k = number of orthogonal MSTs used, with the modification 

( ) .
2

1lim,, 





 −≈

∞→ nk
Spgf

n
δ  

We use the same distributions used for evaluating the αJensen Rényi Divergence. 
In Figure 10, we plot approximate Henze-Penrose Divergence results for d=2. Note that 
as with the approximate αJensen Rényi Divergence values for d=2, there is some overlap 
in values at the lowest separations. However the mean values for the approximate Henze-
Penrose Divergence measures at low sample number are consistent with the asymptotic 
values, whereas the low-sample-number αJensen Rényi Divergence values show bias 
with respect to the asymptotic values. Also, in contrast with the αJensen Rényi 
Divergence, the Henze-Penrose Divergence does not continue to increase once the two 
feature set clusters are separated. In Figure 10, we plot approximate Henze-Penrose 
Divergence results for d=20. For sample size < 500, there is some bias relative to the 
asymptotic values, but both the bias and the variance appear to be less than that for the 
αJensen Rényi Divergence values (Figure 7).  
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Figure 10: Approximate Henze-Penrose Divergence values for two unit-normal 
distributions (d=2) with different mean separations, as a function of sample size, for k=1 
(mean and std plotted for 10 realizations). 



ISP Phase II (Contract N00014-04-C-0437) 
Quarterly Progress Report (CDRL A001 No. 4) 

 

 17

number of samples in each distribution

A
pp

ro
xi

m
at

e 
H

en
ze

-P
en

ro
se

 D
iv

er
ge

nc
e

separation of means

d=20

number of samples in each distribution

A
pp

ro
xi

m
at

e 
H

en
ze

-P
en

ro
se

 D
iv

er
ge

nc
e

separation of means

number of samples in each distribution

A
pp

ro
xi

m
at

e 
H

en
ze

-P
en

ro
se

 D
iv

er
ge

nc
e

separation of means

d=20

 
Figure 11: Approximate Henze-Penrose Divergence values for two unit-normal 
distributions (d=20) with different mean separations, as a function of sample size, for k=1 
(mean and std plotted for 10 realizations). 
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Figure 12: Approximate Henze-Penrose Divergence values for two unit-normal 
distributions (d=2) with sample sizes of n1=n2 ∈ {500,2000}, as a function of mean 
separation, for k∈ {1,2,3,4,5} (mean and std plotted for 10 realizations). 
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Figure 13: Approximate Henze-Penrose Divergence values for two unit-normal 
distributions (d=20) with sample sizes of n1=n2 ∈ {500,2000}, as a function of mean 
separation, for k∈ {1,2,3,4,5}  (mean and std plotted for 10 realizations 

We next use { }2000,50021 ∈= nn and vary { }5,4,3,2,1∈k  for d=2 and d=20, again 
using unit-variance normal distributions with differing amounts of mean separation. 
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Results are shown in Figure 12 for d=2 and Figure 13 for d=20. For d=2, the choice of 
{ }2000,50021 ∈= nn  or { }5,4,3,2,1∈k  produces no meaningful difference in the mean values, 

as shown in Table 1. The standard deviations are smaller in the 200021 == nn case 
compared with the 50021 == nn case, and the standard deviations decrease as k increases, 
as shown in Table 2. For d=20, the choice of { }2000,50021 ∈= nn  or { }5,4,3,2,1∈k does 
produce a small but measurable change in the mean values, as shown in Table 3. The 
standard deviations are smaller in the 200021 == nn case compared with the 

50021 == nn case, and the standard deviations decrease as k increases, as shown in Table 
4. Also, for the lower separation values (where the two distributions are actually 
overlapped), the d=20 approximate Henze-Penrose Divergence values are lower than the 
d=2 approximate Henze-Penrose Divergence. This is expected, as the unit-variance 
distributions are more spread out in higher dimensions (as dimensionality increases, less 
mass is contained within one standard deviation). Since the two distributions are more 
spread out in d=20 than in d=2, for a given mean separation there is more overlap and 
thus the approximate Henze-Penrose Divergence is less. 
d=2 n=500, 

k=1 
n=500, 
k=2 

n=500, 
k=3 

n=500, 
k=4 

n=500, 
k=5 

n=2000, 
k=1 

n=2000, 
k=2 

n=2000, 
k=3 

n=2000, 
k=4 

n=2000, 
k=5 

s=0.0 0.507 0.502 0.503 0.503 0.504 0.502 0.500 0.500 0.499 0.500 
s=0.5 0.537 0.532 0.532 0.529 0.529 0.527 0.530 0.529 0.528 0.528 
s=1.0 0.596 0.598 0.598 0.597 0.597 0.600 0.601 0.601 0.602 0.601 
s=1.5 0.683 0.685 0.684 0.683 0.681 0.691 0.691 0.690 0.690 0.689 
s=2.0 0.778 0.777 0.776 0.775 0.774 0.774 0.775 0.774 0.775 0.776 
s=2.5 0.846 0.848 0.850 0.850 0.850 0.847 0.847 0.846 0.845 0.845 
s=5.0 0.991 0.990 0.990 0.990 0.990 0.991 0.991 0.991 0.991 0.991 
s=7.5 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
s=10.0 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
s=15.0 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
s=20.0 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 

Table 1:Approximate Henze-Penrose Divergence values for two unit-normal distributions 
(d=2) with sample sizes of  n1=n2 ∈ {500,2000}, as a function of mean separation, for 
k={1,2,3,4,5}, mean for 10 realizations. 
d=2 n=500, 

k=1 
n=500, 
k=2 

n=500, 
k=3 

n=500, 
k=4 

n=500, 
k=5 

n=2000, 
k=1 

n=2000, 
k=2 

n=2000, 
k=3 

n=2000, 
k=4 

n=2000, 
k=5 

s=0.0 0.019 0.012 0.010 0.010 0.009 0.007 0.004 0.004 0.003 0.003 
s=0.5 0.014 0.007 0.005 0.004 0.006 0.006 0.005 0.002 0.003 0.003 
s=1.0 0.012 0.006 0.006 0.005 0.005 0.006 0.005 0.005 0.004 0.004 
s=1.5 0.012 0.008 0.006 0.005 0.003 0.006 0.007 0.006 0.007 0.006 
s=2.0 0.017 0.011 0.010 0.011 0.011 0.007 0.005 0.004 0.004 0.003 
s=2.5 0.011 0.010 0.007 0.007 0.006 0.005 0.005 0.005 0.004 0.004 
s=5.0 0.004 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 
s=7.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
s=10.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
s=15.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
s=20.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 2: Approximate Henze-Penrose Divergence values for two unit-normal 
distributions (d=2) with sample sizes of n1=n2 ∈ {500,2000}, as a function of mean 
separation, for k={1,2,3,4,5}, std. dev. for 10 realizations. 
d=20 n=500, n=500, n=500, n=500, n=500, n=2000, n=2000, n=2000, n=2000, n=2000, 
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k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 
s=0.0 0.491 0.490 0.493 0.494 0.496 0.499 0.499 0.498 0.498 0.499 
s=0.5 0.514 0.514 0.513 0.511 0.510 0.514 0.515 0.515 0.515 0.513 
s=1.0 0.554 0.552 0.548 0.548 0.547 0.566 0.559 0.557 0.556 0.556 
s=1.5 0.620 0.619 0.614 0.611 0.609 0.635 0.632 0.630 0.627 0.625 
s=2.0 0.699 0.688 0.684 0.681 0.678 0.720 0.714 0.709 0.707 0.704 
s=2.5 0.771 0.763 0.759 0.756 0.752 0.792 0.787 0.784 0.781 0.779 
s=5.0 0.980 0.980 0.978 0.978 0.977 0.983 0.982 0.982 0.981 0.981 
s=7.5 0.999 0.999 0.999 0.999 0.999 1.000 1.000 0.999 0.999 0.999 
s=10.0 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
s=15.0 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
s=20.0 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 

Table 3: Approximate Henze-Penrose Divergence values for two unit-normal 
distributions (d=20) with sample sizes of n1=n2 ∈ {500,2000}, as a function of mean 
separation, for k={1,2,3,4,5}, mean for 10 realizations. 
d=20 n=500, 

k=1 
n=500, 
k=2 

n=500, 
k=3 

n=500, 
k=4 

n=500, 
k=5 

n=2000, 
k=1 

n=2000, 
k=2 

n=2000, 
k=3 

n=2000, 
k=4 

n=2000, 
k=5 

s=0.0 0.017 0.010 0.006 0.005 0.004 0.009 0.006 0.005 0.004 0.003 
s=0.5 0.020 0.014 0.011 0.008 0.009 0.008 0.008 0.006 0.004 0.003 
s=1.0 0.011 0.010 0.008 0.008 0.008 0.010 0.008 0.007 0.007 0.006 
s=1.5 0.018 0.014 0.012 0.010 0.009 0.007 0.005 0.005 0.005 0.005 
s=2.0 0.015 0.013 0.008 0.008 0.006 0.004 0.005 0.006 0.006 0.006 
s=2.5 0.011 0.014 0.012 0.011 0.010 0.005 0.004 0.003 0.004 0.004 
s=5.0 0.004 0.003 0.004 0.004 0.004 0.001 0.001 0.002 0.002 0.001 
s=7.5 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
s=10.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
s=15.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
s=20.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 4: Approximate Henze-Penrose Divergence values for two unit-normal 
distributions (d=20) with sample sizes of n1=n2 ∈ {500,2000},  as a function of mean 
separation, for k={1,2,3,4,5}, std. dev. for 10 realizations. 

Henze-Schilling Test 
[Henze 1988] extends previous work [Schilling1986] to present a distribution-free 
multivariate two-sample test. The Henze-Schilling test is based on T(p,k), the cumulative 
number of k-nearest-neighbor type coincidences measured over the pooled sample set 
consisting of 21 nnp +=  samples. For a fixed but arbitrary norm ⋅  on dℜ  and given the 
pooled sample set { } ,,,,,, 2111,,1 nnp YYXXZ KKK =  define the r-th nearest neighbor to Zi 
(denoted by Nr(Zi) ) as that point Zj satisfying ijim ZZZZ −<−  for exactly r-1 values of 
m, 1 ≤ m ≤ p; m ≠ i , j. Then define the indicator variable I(i,r) as follows: I(i,r) = 1, if Zi 
and Nr(Zi) belong to the same parent sample set; I(i,r) = 0 otherwise. The test statistic 
T(n,k) is then defined as: 

( ) ( ) .,,
1 1
∑∑

= =

≡
p

i

k

r

riIknT  

Under the null hypothesis gfH =:0 , it is shown that asymptotically T(p,k) is normally 
distributed, and the expected mean and variance of T(p,k) under the null hypothesis are 
given. One can then form the z-score of T(p,k) and reject H0 at approximate level α:  
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The Henze-Schilling Statistic, for equal sample sizes ,21 nnn ==  is expressed as ( )
.

2
,

nk
kpT  

We use the same distributions as before. In Figure 14 and Figure 15, we plot the 
Henze-Schilling Statistic for d=2 and d=20, respectively. However due to run-time 
considerations we stop at 80021 == nn  for d=2 and 100021 == nn  for d=20. In Figure 16 
we plot the Henze-Schilling Statistic for d=2 and d=20, for fixed sample size 50021 == nn  
and for { }5,4,3,2,1∈k . 
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Figure 14: Approximate Henze-Schilling Statistic values for two unit-normal 
distributions (d=2) with different mean separations, as a function of sample size, for k=1 
(mean and std plotted for 10 realizations). 
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Figure 15: Approximate Henze-Schilling Statistic values for two unit-normal 
distributions (d=20) with different mean separations, as a function of sample size, for k=1 
(mean and std plotted for 10 realizations). 
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Figure 16: Approximate Henze-Schilling Statistic values for two unit-normal 
distributions with dimensionalities d=2 and d=20, for sample size n1=n2=500 as a 
function of mean separation, for k∈ {1,2,3,4,5}  (mean and std plotted for 10 
realizations). 

Note that the Henze-Schilling Statistic is remarkably similar in value to the 
Henze-Penrose Divergence (compare Figure 14 and Figure 15 to Figure 10 and Figure 
11, and compare Figure 16 to the left side plots in Figure 12 and Figure 13). This is to be 
expected. The Henze-Penrose Divergence makes use of the Friedman-Rafsky statistic S, 
which is a measure of how many edges in k orthogonal MSTs connect nodes from 
different parent distributions. The Henze-Schilling Statistic T is a measure of how many 
edges in the cumulative k-nearest-neighbor graph connect nodes from the same parent 
distribution. In both cases, the total number of edges in the fully-connected graphs is (2n-
1)k, where 212 nnn +=  in the case nnn == 21  is the total number of nodes and k is the 
number of orthogonal graphs included, whether MSTs or kNNs. The first MST is 
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analogous to the 1-nn graph – nodes are connected to their nearest neighbor. Increasing k 
to  k=2 adds in the second MST which is analogous to adding in the 2-nn graph, and so 
on. Normalizing both S and T by 2nk, which for large n is practically equal to the total 
number of edges (2n-1)k, results in S/2nk and T/2nk. The former is practically equal to 
the fraction of edges in k orthogonal MSTs that connect nodes from different 
distributions, and the latter is practically equal to the fraction of edges in cumulative 
kNNs that connect nodes from the same distribution. Subtracting the former from 1 gives, 
practically, the fraction of edges in k orthogonal MSTs that connect nodes from the same 
distribution, and of course 1- S/2nk is simply the approximate Henze-Penrose 
Divergence.  

Thus, to the extent that cumulative orthogonal MSTs use the same edges as 
cumulative kNN graphs, one would expect the Henze-penrose Divergence and the Henze-
Schilling Statistic to have similar values. Friedman and Rafsky [Friedman & Rafsky 
1979] allude to this correspondence: “Results were derived … for the mean and variance 
of a runs statistic based on the MST. However, the derivations do not require that the set 
of edges considered form an MST or even a tree. The results are valid for any graph with 
exactly N-1 edges, and moreover, for any graph containing the N points… To have 
reasonable power against general alternatives, it is necessary that the edges generally link 
points that are close in the observation space. As pointed out, this motivated our choice of 
the MST. The graph that links every point to its nearest neighbor(s) is another 
possibility.” In Figure 17 we plot the approximate Henze-Schilling Statistic against the 
approximate Henze-Penrose Divergence (mean values from ten realizations of the 
random distributions), for fixed sample size 50021 == nn  and for { }5,4,3,2,1∈k . The two 
divergence metrics are clearly highly correlated; in fact in all ten cases (d=2 and d=20, 
for { }5,4,3,2,1∈k ), the approximate Henze-Penrose Divergence and approximate Henze-
Schilling Statistic have a correlation coefficient ρ > 0.99. For ease of comparison of 
behavior of the means and standard deviations (from ten realizations of the random 
distributions) of the approximate Henze-Penrose Divergence and approximate Henze-
Schilling Statistic, we tabulate the mean and standard deviation for the approximate 
Henze-Schilling Statistic in Tables 5–8. These values can be compared with those of the 
approximate Henze-Penrose Divergence, given in Tables 1–4. 
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Approximate Henze-Penrose Divergence  
Figure 17: Approximate Henze-Schilling Statistic values plotted against approximate 
Henze-Penrose Divergence values, for two unit-normal distributions with 
dimensionalities d=2 and d=20, for sample size n1=n2=500 as a function of mean 
separation, for k∈ {1,2,3,4,5} (mean values from 10 realizations). 
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d=2 n=500, 
k=1 

n=500, 
k=2 

n=500, 
k=3 

n=500, 
k=4 

n=500, 
k=5 

     

s=0.0 0.492 0.489 0.490 0.491 0.491      
s=0.5 0.526 0.524 0.524 0.525 0.527      
s=1.0 0.598 0.598 0.597 0.597 0.597      
s=1.5 0.687 0.690 0.689 0.686 0.687      
s=2.0 0.773 0.773 0.774 0.774 0.773      
s=2.5 0.852 0.850 0.849 0.849 0.849      
s=5.0 0.989 0.989 0.989 0.988 0.988      
s=7.5 1.000 1.000 1.000 1.000 1.000      
s=10.0 1.000 1.000 1.000 1.000 1.000      
s=15.0 1.000 1.000 1.000 1.000 1.000      
s=20.0 1.000 1.000 1.000 1.000 1.000      

Table 5: Approximate Henze-Schilling Statistic values for two unit-normal distributions 
(d=2) with sample size of n1=n2=500, as a function of mean separation, for k={1,2,3,4,5}, 
mean for 10 realizations. 

d=2 n=500, 
k=1 

n=500, 
k=2 

n=500, 
k=3 

n=500, 
k=4 

n=500, 
k=5 

     

s=0.0 0.022 0.013 0.012 0.009 0.009      
s=0.5 0.026 0.019 0.016 0.016 0.015      
s=1.0 0.021 0.016 0.016 0.013 0.012      
s=1.5 0.020 0.014 0.014 0.010 0.009      
s=2.0 0.020 0.015 0.015 0.014 0.011      
s=2.5 0.010 0.007 0.008 0.008 0.008      
s=5.0 0.004 0.004 0.004 0.005 0.004      
s=7.5 0.000 0.001 0.000 0.000 0.000      
s=10.0 0.000 0.000 0.000 0.000 0.000      
s=15.0 0.000 0.000 0.000 0.000 0.000      
s=20.0 0.000 0.000 0.000 0.000 0.000      

Table 6: Approximate Henze-Schilling Statistic values for two unit-normal distributions 
(d=2) with sample size of n1=n2=500, as a function of mean separation, for k={1,2,3,4,5}, 
std. dev. for 10 realizations. 

d=20 n=500, 
k=1 

n=500, 
k=2 

n=500, 
k=3 

n=500, 
k=4 

n=500, 
k=5 

     

s=0.0 0.501 0.495 0.496 0.497 0.495      
s=0.5 0.506 0.508 0.510 0.509 0.509      
s=1.0 0.558 0.556 0.554 0.554 0.551      
s=1.5 0.622 0.623 0.621 0.618 0.617      
s=2.0 0.701 0.696 0.695 0.693 0.690      
s=2.5 0.777 0.771 0.766 0.765 0.763      
s=5.0 0.982 0.982 0.980 0.980 0.979      
s=7.5 0.999 0.999 0.999 0.999 0.999      
s=10.0 1.000 1.000 1.000 1.000 1.000      
s=15.0 1.000 1.000 1.000 1.000 1.000      
s=20.0 1.000 1.000 1.000 1.000 1.000      

Table 7: Approximate Henze-Schilling Statistic values for two unit-normal distributions 
(d=20) with sample size of n1=n2=500, as a function of mean separation, for 
k={1,2,3,4,5}, mean for 10 realizations. 

d=20 n=500, n=500, n=500, n=500, n=500,      
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k=1 k=2 k=3 k=4 k=5 
s=0.0 0.014 0.009 0.008 0.008 0.006      
s=0.5 0.027 0.017 0.015 0.013 0.012      
s=1.0 0.008 0.008 0.007 0.009 0.008      
s=1.5 0.018 0.016 0.015 0.014 0.013      
s=2.0 0.018 0.018 0.016 0.013 0.011      
s=2.5 0.017 0.013 0.011 0.011 0.010      
s=5.0 0.006 0.004 0.004 0.005 0.005      
s=7.5 0.001 0.001 0.001 0.001 0.001      
s=10.0 0.000 0.000 0.000 0.000 0.000      
s=15.0 0.000 0.000 0.000 0.000 0.000      
s=20.0 0.000 0.000 0.000 0.000 0.000      

Table 8: Approximate Henze-Schilling Statistic values for two unit-normal distributions 
(d=20) with sample size of n1=n2=500, as a function of mean separation, for 
k={1,2,3,4,5}, std. dev. for 10 realizations. 

Conclusion 
We evaluated three distribution-free, asymptotic measures of feature set 

divergence / separability. For low sample sizes (n < 500) and low dimensionality, the 
methods have similar behavior. For low sample sizes and higher dimensionality, the 
αJensen Rényi Divergence appears to be less stable than the other two methods. The 
Henze-Penrose Divergence and the Henze-Schilling Statistic are found to have similar 
values. Currently our Henze-Penrose Divergence routine calls MST code written in c, but 
the Henze-Schilling Statistic routine is coded entirely in MATLAB. Once we rewrite the 
Henze-Schilling Statistic in c, we can evaluate relative runtimes.  

Of the three methods tested against location alternatives for two unit-variance 
normal distributions, the Henze-Penrose Divergence and the Henze-Schilling Statistic 
give similar results that appear to have less bias and less variance at higher 
dimensionality and low sample number than does the αJensen Rényi Divergence. Once 
the two distributions are completely separated, the Henze-Penrose Divergence and 
Henze-Schilling Statistic no longer increase with increasing distributional separation, 
however the αJensen Rényi Divergence continues to increase with increasing 
distributional separation. This difference in behavior can dictate the choice of 
distribution-free divergence measurement, given the requirements of the task at hand. 

It is our intention to evaluate the αJensen Rényi Divergence, the Henze-Penrose 
Divergence and the Henze-Schilling Statistic over a broader set of conditions, including 
higher dimensionality, scale alternatives and different types of distributions for the two 
feature sets. Also it is our intention to evaluate the other distribution-free divergence 
measurements listed in the Introduction. 
2.A.1.d. CADSP UCIR Evaluation Technical Support 

There is currently a great deal of interest in UCIR sensors for Automatic Target 
Acquisition (ATA) on smart munitions, such as the NetFires NLOS PAM. The Georgia 
Tech CADSP imager has the potential for being incorporated into on-Focal Plane Array 
(FPA) pre-processing operations; these include: Non-Uniformity Compensation (NUC) 
and non-linear/non-local pixel equalization. Traditional equalization approaches (e.g., 
histogram equalization) tend to perform very poorly and it is likely that a localized, non-
linear equalization approach is needed. Given ISP Phase II funding constraints, we will 
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limit these pre-processing investigations to an evaluation of their implementation on the 
Georgia Tech CADSP imager. We have also been in preliminary discussions with Eglin, 
Air Force Base about using their optical flow test facilities.  

2.A.2. ASU Technical Progress 
2.A.2.a. Tracking and Sensor Scheduling with Motes Demonstration 
 We have continued to investigate sensor configuration for the ISP demonstration of 
tracking a target moving through a network of sensor motes. Specifically, we developed a 
myopic sensor scheduling algorithm that activates the lowest network energy cost 
combination of at most L sensors in the network to maintain a desired squared-error 
accuracy in the target's position estimate. The scheduling is performed using a linear 
approximation and the information formulation of the filter step of the Kalman filter. We 
pose the sensor scheduling problem as a discrete optimization problem with L binary-
valued variables; each sensor has a corresponding binary variable that indicates whether 
the sensor will obtain a measurement in a given time epoch (a value of 1 implies that the 
sensor obtains a measurement). We have derived a 0−1 mixed integer programming 
(MIP) formulation for the case where the sensors provide only position information; we 
solve the MIP using a linear programming branch-and-bound algorithm. For the case 
when the sensors provide both position and velocity information, the scheduling problem 
is posed as a 0−1 convex program that we solve using the outer approximation algorithm. 
Our simulation results demonstrate that we can obtain optimal sensor scheduling for up to 
50−70 sensors in the order of seconds. 

 We are continuing our characterization of the Mica-2/Z acoustic sensor response to 
a walking human target. We have conducted experiments to test the transmission and 
reception of acoustic data using the microphone on the sensor motes. We have 
implemented a sound recorder program that runs on the mote and continuously samples 
the data at 14 KHz but begins recording only when the samples have substantial energy. 
As many 8-bit samples as possible are collected; these are then transmitted to the base 
station. 

 We have resolved some packet corruption/loss issues and were able to achieve 
higher sampling rates than in our original experiments. For testing purposes, sinusoids 
with varying frequencies were generated and sensed by the microphone on the Mica-2 
motes. The recorded data was transmitted in 36-bit packets to the base station and 
analyzed using Matlab. We observed fairly good reconstruction of the sinusoids for 
frequencies between 200 Hz and 5 KHz. We have also investigated the bandwidth of the 
acoustics signals generated by footsteps.  

 We collected data using a microphone connected to a PC; we have determined that 
human footsteps (tennis shoes on a hard floor) have a bandwidth of about 1-1.5 kHz. As 
sinusoids with such frequencies were successfully recorded and transmitted with the 
motes, we anticipate that footsteps can also be analyzed with this setup. Now that we are 
confident that the mote hardware is working correctly, the experiment of collecting 
acoustic data for a person walking in a circle around the sensor mote at various distances 
will be repeated to obtain accurate receiver operating curves and probability of detection 
versus threshold curves as well as an acoustic energy measurement model appropriate for 
our tracking and scheduling algorithms described above.  
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 The acoustic model will be incorporated in a 1-bit tracker. Specifically, the energy 
detector will be processed at each sensor mote and the received energy will be compared 
to a set threshold in order to obtain binary decisions (detect/no-detect). The detector 
decisions encoded in a single bit will be communicated to a centralized processor that 
will use these measurements in a particle filter based tracker (implemented in Matlab) to 
estimate the target's position and velocity.. 

2.A.2.b. Multiple Target Tracking using the Configurable CADSP Imager   
 We continue to investigate the problem of tracking multiple targets in a 
surveillance region using image data from the CADSP imager. The objective is to be able 
to configure the imager to compute optical flow or image selective sub-areas of the field 
of view. We have successfully detected and estimated the motion of a single target 
(entering and leaving a scene) using synthetic data that we generated using the POV ray-
tracing program. We have also simulated the use of a configurable imager that can 
provide only selective regions of interest in the imager as well as perform linear 
operations on these selected regions; the linear operations are Gaussian or Mexican hat 
filter operations that can be performed on video frames by the CADSP imager. Currently, 
we are experimenting with real data from a web-camera recording a person walking. 
After calibrating the camera and training the background and foreground distributions of 
a real scene, we will experiment with tracking the person entering and leaving a room; we 
will also extend these results to multiple persons. 

2.A.3. UM Technical Progress 
In the three months since the last quarterly report we have made progress on three 

fronts. First we have continued our development of classification constrained 
dimensionality reduction (CCDR) techniques for high dimensional classification 
problems. Second, we have developed new methods for localization in wireless sensor 
networks. Third, we have started to develop a new multivariate anomaly detection 
method that we call geometric entropy graphs (GEM) that is founded on our recently 
formulated theory of k-point minimal spanning tree (kMST) covering sets.  

2.A.3.a. Progress on Classification Constrained Dimensionality Reduction 
Progress has been made in the formulation of a low complexity out-of-sample 

extension of CCDR. In the revision of the paper [Raich and Hero 2006], accepted at the 
IEEE ICASSP conference after the last quarterly report, we established that a multi-class 
generalization of CCDR could outperform other algorithms in terms of average 
misclassification error on the benchmark LANDSAT dataset. The implementation of 
CCDR requires training  (with cross-validation) a modified Laplacian Eigenmap (LE) 
dimensionality reduction algorithm to achieve an optimal tradeoff between over-fitting 
the LE manifold  to the training data  and misclassifying the training labels (using kNN or 
other simple classifier on the manifold).  

Unlike PCA or local MDS algorithms, the LE classifier does not give an explicit 
mapping function from the measurement space to the classification space. Specifically, 
the LE mapping is implicit and its application to a new unlabeled sample, the so-called 
out-of-sample-extension, presents significant hurdles. In our ICASSP paper [Raich and 
Hero 2006] we used a heuristic method to perform this out-of-sample extension that 
requires application of the CCDR optimization to the union of the training samples and 
the new unlabeled sample. This method is impractical for online applications since it 
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requires growing memory and computation as new samples are taken into the system. 
Using a modified version of Nystrom’s kernelization method as implemented for LE 
[Bengio et al. 2004] we can achieve an out-of-sample extension of CCDR that does not 
suffer from growing memory and computation. We are in the process of evaluating this 
out-of-sample extension for CCDR and will have more to report on it next quarter. 

2.A.3.b. Progress on Localization in Sensor Networks 
We have extended self-localization (calibration) methods and performance 

analyses to localizing transmitter nodes with either random, or completely unknown 
transmit power [Patwari and A. O. Hero 2006]. Transmit power calibration is the first 
step in solving the important problem of simultaneous tracking and calibration for 
wireless sensor networks. In realistic sensor networks, source energies and transmitter 
powers will vary by source and sensor, and over time. Power calibration eliminates any 
assumptions and makes localization and tracking robust to variation. 

We have developed a new, low-complexity sensor localization algorithm, called 
the Laplacian Eigenmap Adaptive Neighbor (LEAN) algorithm [Patwari et al. 2006]. The 
LEAN algorithm and the Distributed Weighted MDS (dwMDS) method are both 
manifold learning methods that use pairwise distance measurements between nearby 
sensors. The LEAN algorithm has two main advantages. First, the LEAN algorithm 
solves directly for the global optimum. Secondly, it has low complexity compared to 
other globally-optimal algorithms. Both dwMDS and LEAN employ adaptive algorithms 
that improve robustness by de-emphasizing measurements that appear to be less reliable. 

Further, we are currently testing new localization algorithms which use radio 
interferometric measurements (RIMs). Rather than estimate sensor coordinates directly 
from RIMs, we are testing an indirect method with two stages:  (1) Estimate pairwise 
distances from RIMs; (2) Estimate sensor coordinates from pairwise distance estimates. 
The direct method has difficultly overcoming local optima if initialized too far from the 
global optimum. The promise of the indirect method is that neither stage of the process 
suffers significantly from local optima, and the combined computation is dramatically 
less intensive than direct solution. Distributed calculation also becomes possible. We 
have shown the feasibility of the indirect method and are evaluating its performance and 
robustness. 

2.A.3.c. Geometric Entropy Graphs (GEM) for Anomaly Detection 
Our motivation for this work was to counteract the severe sensitivity to spurious 

training samples of non-linear projection methods such as ISOMAP, LLE, HLE, and LE. 
For example, we have observed that the generalization error of CCDR suffers badly when 
a training sample has few near neighbors - such an anomalous point overly stretches the 
manifold to accommodate a smooth mapping. To control such errors these anomalous 
points must be identified so that they can subsequently be down-weighted or eliminated 
from the training sample. There has been substantial interest in identification of 
anomalous points in the machine learning community, notably the work on minimal 
volume sets by [Scott and Nowak 2005]. For Lebesgue continuous (no Dirac 
components) multivariate densities of the training data, the minimum volume set of 
specified coverage probability has several optimality properties in terms of anomaly 
detection. However, there are two problems with the approach of [Scott and Nowak 
2005]: the minimum volume set loses its optimality properties when there are Dirac 
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components in the density; and the minimum volume set estimation procedure of [Scott 
and Nowak 2005] involves a relatively complicated set approximation based on 
multiresolution dyadic partitioning methods.  

We have developed a theory of geometric entropy manifolds (GEM) which will 
likely overcome the two limitations of [Scott and Nowak 2005]. In GEM dimension 
reduction is combined with minimum entropy set estimation using ideas related to 
minimal spanning trees (MST), specifically approximations to the kMST [Hero and 
Michel 1999], i.e., the tree obtained by optimally pruning the MST (connecting all of the 
data points) to connect only a specified proportion  p=k/n of them, optimized to have 
minimal entropy. Points falling outside the kMST are then declared anomalies. This test 
is asymptotically optimal: It maximizes correct detection probability among all tests of 
specified false alarm level. Moreover, the minimum entropy set is naturally 
dimensionality reducing and reduces to the minimal volume set when the multivariate 
density of the training data is Lebesgue continuous. Figure 18 illustrates the GEM 
approach as compared with the approach of [Scott and Nowak 2005]. The points captured 
by the kMST, i.e. those connected by the red line, cover the most concentrated 90% of 
the points. The anomaly detector is implemented by inserting the new data point into the 
sample and re-computing the kMST. An anomaly is declared if the kMST does not span 
the new data point. The computation is entirely data driven, adapts to intrinsic data 
dimensionality, and does not involve explicit set estimation. Computational efficiency is 
still an issue, however, and methods for approximating the kMST for large data sets have 
been proposed using region of influence sets of the kMST. The mathematical and 
algorithmic foundations for such methods are currently being developed and a report is 
currently in preparation. 

 
 

 
Figure 18: A simulation of a Gaussian mixture density in the plane. At left is the minimal 
volume set (gray) with coverage probability of 0.9 estimated by the multiresolution 
method of [Scott and Nowak 2005]. Any points falling outside of the minimum volume 
set would be classified as anomalous with level of significance 0.1. At right is the GEM 
method (illustrated for a smaller number of points from the same distributions at left) 
using the k-MST method. The minimum entropy set covering a specified proportion (0.9) 
of the probability mass of the distribution of the training samples is defined as the region 
of covered by the minimal spanning tree that covers at least 90% points. The asterisks 
denote training samples and the star denotes a potential anomaly. The coverage region 
can be defined either implicitly or explicitly using combinatorial optimization techniques. 
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2.A.4. FMAH Technical Progress 
2.A.4.a. Nearest Neighbor Metrics 

Over the last two months a new adaptive nearest neighbor algorithm has been 
developed. The goal for the work performed was to try to find a satisfying framework for 
the metrics that can be used to perform efficient approximation of the optimal Sensing 
Waveform- Design. Specific applications for these mathematical Waveform Processing 
methodologies are currently being identified.  

Hybrid Nearest Neighbor Metrics 
Previous attempts to address the problem of characterizing the Scattered Signal 

Space have been totally disconnected from the context within which the data is collected 
in practical applications. This means that the problem was often reduced to the one of 
return classification: e.g. by identifying a relationship between the horizontal and vertical 
range of movement of the objects – or other, more complex geometric relationships 
between time-frequency components. 

However, all modern surveillance problems are entirely site/application specific 
so that a large amount of variability in the characteristics of data collected under different 
conditions has to be considered as a component of the problem. Thus, a substantial 
degree of freedom in feature selection is a crucial requirement for any reliable algorithm. 
At the same time sidelobe reduction problem is of fundamental importance in a variety of 
Radar applications. 

This is why over the last eight weeks we started the development of a technique 
capable of reducing the Integrated Side-lobe Level (ISL) of a mixed signal r, consisting 
of a Target return, Multi-paths (attenuated and delayed) and Noise Clutter returns: 

( ) ( ) ( ) ( ) ( )tntstsbtpatr
N

++−+= ∑
= Kl

lll
1

ˆ τ       (1) 

The idea is to find an optimal waveform design via a series of subsequent 
approximations. The assumption usually is that the Target components in (1) are 
stationary over a few duty cycles and that the noise component is Gaussian. Detection is 
performed by simply thresholding the output of the correlator. 

Algorithm Overview 
The main idea for new Nearest Neighbor Algorithm we developed is to combine 

features of the Laplacian Eigenmap [Belkin & Nyogi] algorithm with those of the Local 
Linear Embedding (LLE) introduced by L. Saul. For both processing methods, the 
fundamental assumption is that we can build a global, low dimensional parameterization 
of the data by determining the Nearest Neighbors of each data-point, provided that a 
sensible choice of the fixed number of the nearest neighbors for each point can be made. 
However, despite of their many successful applications, the algorithms mentioned above 
will fall short of being useful in a realistic application for the data we are interested in: 

 Reliable estimates for the effect of noise or systematic distortions on the results of 
these algorithms are extremely complicated even in trivial cases (e.g. the very 
notion of a sufficient number of parameters cannot be determined a priori).  
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 Due to the specific character of the motion we are analyzing, it may be impossible 
to effectively separate the elements of different classes (e.g. distances between 
unrelated motions may be smaller than those between similar ones). 

To overcome these obstacles we introduce a one-shot solution: we adaptively 
perturb the matrix of distances between the points by a small (i.e. bounded) amount in 
order to get a more appropriate local metric. This can be easily done as follows: the 
distances between points are iteratively modified in a Stochastic Gradient loop until the 
cost of the newly obtained metric configurations satisfies a predetermined, sub-optimal 
cost-criterion, say: 

C(t) = F (s1 (t) , . . . , sN (t) , . . . ,m1 (t) , . . . ,mM (t))      (2) 

The cost function in (2) simply measures the distance between the clusters of 
points corresponding to the different classes of received Signals (no-target, target, clutter 
etc.), after a set of waveforms sk has been sent out and weighted with weight functions 
mk. 

2.A.4.b. Diffusion based high dimensional data processing 
We begin with a brief discussion of a novel segmentation scheme based on our diffusion 
algorithm. This algorithm will be applied to uncooled infrared imagery that is of great 
interest to the NetFires NLOS program as well as several other multi-mode sensor 
programs that Raytheon is pursuing.  

Overview 
The goal of this portion of the project is to apply and adapt geometric diffusion 

methods of Coifman et al. to IR video data. As a simplification, we consider direct 
application of diffusion operators to the data itself. 

Algorithm 
Consider an image u consisting of a rectangular array of pixels. We construct a 

diffusion filter K, such that repeated application of K to u suppresses the background 
while enhancing or preserving regions of interest in the image. Furthermore, we 
reinitialize the filter after a fixed number of steps, using the output of the previous 
iteration to generate a new filter which is then applied iteratively to the output of the 
previous iteration. 

Construction of K proceeds as follows. For each pixel j in u, a group of 
neighboring pixels of size (2n+1) × (2n+1), denoted x(j) and center on the pixel j, is 
selected. Next, a scalar non-negative kernel function G is selected to measure the degree 
of similarity or difference of two groups x(i) and x(j). The function G is therefore a 
bivariate function of vectors of length (2n+1) × (2n+1). If x(i) = x(j), then G(x(i),x(j)) = 
0, and if x(i) and x(j) are “dissimilar” then G(x(i),x(j)) should be large. Usually, G is 
designed to be a symmetric function of its arguments, so that the degree of similarity 
between x(i) and x(j) is the same as the similarity between x(j) and x(i).  

From this kernel function, together with an integer N and a small parameter, ε, a 
matrix K´ is constructed so that 

K ′
ij =

e−G(x(i), x( j ))/ε if | i − j |≤ R
0 otherwise

 
 
 

. 
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Then, K is constructed from K´ by normalizing the row sums to one; that is, 

K ij = K ′
ij / K ′

il

l
∑   

where the sum is over the columns. The matrix K may be viewed alternatively as a 
diffusion operator, since its action on u is identical to a forward time step in a discrete 
diffusion problem, or as a Markov matrix, since the sums of its rows are unity. Each row 
has (2R+1)2 non-zero entries, and the total number of rows is equal to the number of 
pixels in u. 

Initially, we utilize the square of the Euclidean distance to define 

G(x(i),x( j)) = x(i) − x( j) 2 ,  

a choice that, though apparently simple, is remarkably powerful. In principle, a wide 
variety of possible choices could be made for G. 

Thus, the segmentation algorithm has the following steps: 

Let u1=u. For m=1, …, M: 
1. Define Km using input um as above. 

2. Compute um+1=(Km)N um 

The input to the algorithm is the original image u. The parameters of the algorithm are 
•  G, ε.  
•  R, n. The radius of the filter window and the radius of the pixel sets used to form 

local neighborhoods in the image. 
•  M, N. The number of outer and inner iterations segmentation iteration. 

Application to uncooled IR images 
Below, we apply the algorithm to an uncooled IR image shown in Figure 19. The 

goal of the algorithm is to segment the image into “Target” and “Nontarget” regions. 
After the segmentation process, the segmented image could be used to pull out the target 
portion of the image for further analysis (such as classification/identification, etc.); for 
now, we focus only on the segmentation process. 

 
Figure 19: Single frame of uncooled IR data. The image contains both significant noise, 
as well as ground clutter. 
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Figure 20 shows the result of a few inner iterations of the algorithm. Though 
noise is suppressed, no segmentation has occurred. Increasing the number of inner 
iterations produces the results in Figure 21. Ground clutter is still somewhat evident. 
Finally, in Figure 22, much improved results are obtained by utilizing both inner and 
outer iterations. The algorithm shows remarkably robust performance, given the level of 
ground clutter and noise in the image. Edge detection methods applied to this same 
image, as seen in Figure 23 for example, produce results containing a large number of 
edges due to ground clutter.  

Possible next steps 
•  Explore statistical or other functions in place of Euclidean distance for the choice 

of G. Different types of targets or images might benefit from other choices. 
•  Test performance of algorithm on images at a variety of ranges, with the goal of 

developing a ‘training’ set of parameters for a given target at close range, which 
can then be used for target segmentation/identification at longer ranges. 

•  Test algorithm on a wider variety of images, including uncooled IR with higher 
noise levels, lower contrast, and more ground clutter. 

•  Exploit interframe data in IR video. 
•  Develop algorithms for automated or semi-automated choice of parameters 

(currently parameters are selected through manual trial-and-error). 
•  Develop algorithms for post-processing results to eliminate spurious hot/cold 

spots, preserve target detail in original image, etc. 

 
Figure 20: R = n = 1, ε=0.0005, M = 1, N = 4. In this image, noise has been reduced 
substantially, but no appreciable segmentation has occurred. In particular, the ground 
clutter is still quite prominent. 
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Figure 21: R = n = 1, ε=0.0005, M = 1, N = 100. By increasing the number of inner 
iterations, clutter is reduced somewhat, but target detail has also deteriorated. 

 
Figure 22: R = n = 1, ε=0.0005, M = 100, N = 4. Instead of a large number of inner 
iterations, we use a large number of outer iterations. Target detail has been reduced, but 
the target’s location is preserved. Ground clutter has been almost totally suppressed (with 
the exception of a few hot/cold spots). 

 
Figure 23: ‘Canny’ edge detection applied to original image from Figure 1. Though the 
target edge is indeed visible, ground clutter clearly presents a major obstacle to any 
segmentation algorithm based on edge detection. 
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The initial results appear to be very promising. The diffusion approach was able 
to homogenize the (difficult) clutter, while largely preserving the target. We are in the 
process of getting access to more realistic UCIR imagery, where there is significantly less 
target-background contrast as well as more varied and challenging clutter. 

2.A.5. Georgia Tech Technical Progress 
2.A.5.a Imager IC Development Status 

This quarter design was completed for another generation of the analog 
processing separable transform imager. This version was design on a 0.35um process 
with a resolution of 256x256. The block transform size is 16x16 with a new ability of 8 
pixel offsets allowing for overlaps of the regions of transformation. This extends the 
capability of the architecture beyond simple block transforms. In particular, this allows 
for more general 8x8 separable convolutions. Again, the imager is designed for separable 
transforms though more general transformations are possible with less then optimal 
performance, notably speed. This last version included two A matrices and two B 
matrices, though they may not be programmed while acquiring images.  

Though not completed, progress was made toward the goal of run time 
programming, where one transform may be programmed while another is being used. In 
design and analysis, there where no particular obstacles found to achieving this goal, but 
some practical limitations, most essentially time, deterred placing that capability on this 
chip. At this point is believed the next version will have that ability. Most efforts in this 
design were concentrated on new circuits for reading wide ranges of currents and 
minimize sources of mismatch and error. Previously encountered stability issues were 
examined and changes were made accordingly. This includes architecture tweaks and 
novel circuit modifications. Included in this effort was the inclusion of automatic gain 
compensation amplifiers to work with wide ranges of currents over several orders of 
magnitude, even with wide ranging local image variances. 

    Currently development in board design and coding changes are in progress for testing 
the new chip. Initial tests will be done with image projections using optical test bench. 

2.A.5.b Optical Flow Algorithm Status 
The goal here has been to develop efficient algorithms for optical flow estimation that are 
closely tied to and accelerated by the CADSP imager. The algorithm on which we base 
this work is the LK-OFE (Lukas-Kanade Optical Flow Estimation) algorithm. The 
constraints placed by the CADSP imager architecture can be summarized as: 

1. Only sequential signal flow is realizable. 
2. One column- and one row-wise filtering operations are possible. 
3. Matrix type operation for image is supported. 

What we developed: 

 Checkerboard-type filtering for spatial derivatives  
(Spatially sub-sampled filtering of OFE for derivative values (Ix, Iy)) 

 
Results 

1. Only 2-stage filtering is necessary for spatial OFE derivative values (Ix, Iy). 
2. Anti-aliasing operations are inherently performed for sub-sampling. 
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3. Accuracy of spatially sub-sampled filtering of OFE is almost same with that of 
original LK-OFE for translating and diverging tree sequences. 

4. One basis memory for each row- and column-wise filtering is enough. 
5. Compared to the original sub-sampled LK-OFE, the number of operation and 

memory size for subsequent digital filtering operations (required as part of the 
LK-OFE) is somewhat reduced. 

6. The density of our OFE is dropped between 3 and 3.5 times with respect to that 
of the original LK-OFE. 

7. What we developed can be applied for any gradient-based OFE algorithm. 

 
 
Future work 

1. To increase the density of optical flow field, the interpolation of optical flow field 
would be proper. 

2. Some simple post processing to improve the accuracy of optical flow field may 
be added. 

2.A.6. UniMelb Technical Progress 
2.A.5.a Raytheon Technical Support 
 Raytheon has been working closely with the University of Melbourne (UM). This 
collaboration is strengthened by the UM liaison, Craig Savage, working on a PhD with 
the UM personnel. During the past year, Raytheon and UM have worked together in three 
major areas: 

1. Optimal scheduling for Gauss-Markov systems 
2. Sensor scheduling for targeting/tracking applications 
3. Waveform design for tracking 



ISP Phase II (Contract N00014-04-C-0437) 
Quarterly Progress Report (CDRL A001 No. 4) 

 

 36

The first area is more theoretical, while the others have definite practical applications. 
We detail our work in the areas below. 

Optimal Scheduling for Gauss-Markov Systems  
 In previous quarters, we have shown results for the optimal schedule for scalar 
systems undergoing a random walk. That is, for N systems, each system is evolving as  

kkk wFxx +=+1  

where w ~ N(0,q) is a noise term. If each system’s state is estimated by a Kalman filter, 
then we have shown optimal scheduling results. One interesting case is that if the only 
difference between states is the initial state covariance of each system, ip0 , and each 
system may be measured at most once over a time horizon of length T, then the optimal 
schedule is to measure the T systems with the highest variances in increasing order. This 
is interesting as it is the opposite of the greedy case, which would measure systems with 
the highest variance first. Conversely, according to work by Howard, Suvorova and 
Moran [HSM], for a cumulative cost function, greedy appears to be optimal. Future work 
will include attempts to unify the results to yield a more general scheduling structure, 
with the aim to gain insight to the general problem of when a greedy schedule is optimal. 

 Furthermore, we have identified similar results for when the states of each 
systems are vectors when state estimation is performed with a fixed-gain filter. Our 
results indicate that, unlike the scalar case, the optimal schedule is a function of only the 
process noise covariance, Q, and the “tuning” of the fixed gain. These results are evident 
by the fixed gain equations, in that neither the current estimated state covariance nor the 
measurement error covariance appear in the formulae for estimated state covariance 
propagation. Our scheduling work has been submitted to the 9th International Conference 
on Information Fusion for publication.  

Sensor Scheduling for Targeting and Tracking Applications 
 Emitter location using time difference of arrival (TDOA) techniques was the 
primary focus of our previous work. In TDOA applications, the relative geometry 
between the emitter and passive receivers plays an important role in targeting accuracy. 
Thus, our previous work on scheduling receivers amounted to selecting appropriate 
positioning for the receivers, either in selecting trajectories for the receivers (as in 
UAVs), or by choosing distributed receivers to collect measurements. This initial work 
assumed that the ability of a receiver to detect the emitter was independent of the 
geometry. While that assumption simplified the mathematics, it ignores the practical 
difficulty of substantial differences in beam patterns. The energy in the main beam is 
substantially greater than the power in the back lobe; hence, we would expect the 
probability of detection to vary accordingly. Raytheon is working with UM to define the 
problem appropriately, and to extend the solution to include multiple emitters. More 
information on our progress, including mathematical developments, may be found in the 
UM section of this report. 

 During the past quarter, we have developed a different targeting paradigm. We 
consider the case of a primary observer equipped with a laser rangefinder, GPS receiver 
and a compass. One potential targeting idea would be for the observer to use the 
rangefinder and compass to determine the target’s polar coordinates relative to the 
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observer’s position. However, such errors are dominated by the observer’s ability to 
accurately determine azimuth angle with the compass, and these angle estimation errors 
impact the targeting cross-range solution proportionally with range. 

 If, however, there are passive secondary receivers capable of detecting reflected 
laser energy, these receivers may reduce uncertainty in the cross-range dimension, 
relative to the primary observer case. We have explored results for three cases: 

1. Primary only, in which no secondary measurements are available 
2. Fully observed, where the probability of detection of all receivers is 1 
3. Partially observed, where the probability of detection of secondary receivers is 0.5 

Example tracks for a target moving with nominally constant velocity of 10 m/s due east 
are indicated in Figure 24. The track in each case was computed using an unscented 
Kalman filter [Julier1]. Average state estimation performance is presented in Figure 25. 

 We are currently extending our work to include the scheduling of secondary 
receivers to improve track performance. This work leverages the TDOA scheduling 
algorithms researched in previous quarters, although the equations are different.  

 A paper regarding the general derivation of state estimation for the problem has 
been submitted to the 9th International Conference on Information Fusion. A second 
paper, including scheduling results, is being written for submission to the IEEE 
Transactions on Aerospace and Electronic Systems. 

 
Figure 24: Comparison of tracks in primary only (diamond), fully observed (square), and 
partially observed (circle) cases. Primary only solutions (from range and azimuth 
information) are indicated by X.  Track is estimated using an unscented Kalman filter. 
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Figure 25: State estimation errors for 3 cases. For fully observed case, there is only a 
small amount of difference in position error of the system across multiple measurements. 

Waveform Design for Tracking 
 In previous quarters, we examined waveform selection for tracking within the 
framework of an interacting multiple model (IMM) state estimation algorithm. The work 
was an extension of work undertaken during the waveform adaptive signal processing for 
missiles (WAS-M) program. The waveforms were selected by application of fractional 
Fourier transform (FrFT), which generates a rotation of a lower bound of the 
measurement error. The work and results were accepted for publication in the IEEE 
Transactions on Aerospace and Electronic Systems.  

 That work, while novel in scheduling for an IMM, assumed a pristine 
environment, namely one target characterized by a probability detection of one, with 
neither clutter nor false alarms. In practice, waveforms must attempt to mitigate problems 
with missing detections and/or clutter. While our work on scheduling for Gauss-Markov 
systems has had little to do with waveforms per se, the choice of waveform in tracking 
applications may be included in a Gauss-Markov system by allowing for a choice of the 
measurement noise covariance, R. Furthermore, recent work by Sinopoli et al. [Sino] and 
Gupta et al. [Gupta], have allowed for theoretical limits based on different measurement 
reception rates. While their results were derived in the context of imperfect measurement 
transmission/reception in sensor networks, their results are applicable in cases with a 
probability of detection, λ, less than one. In particular, their results indicate upper and 
lower bounds for the expected estimated state covariance as a function of λ. Such limits 
may be used to quantify a λ (probability of detection) vs. R (measurement covariance) 
trade-off. 

 Other future work includes designing waveforms to reduce clutter density. 
Reducing clutter is primarily a practical concern in that it is difficult to analytically 
determine tracker performance improvement as a function of clutter density reduction.  
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2.A.5.b Greedy versus Non-Greedy Scheduling 
Minimum Entropy Scheduling for Hidden Markov Processes 

In this project we have studied the fundamental model for scheduling of Hidden 
Markov processes. The complete description of this work is in [RSM], which has been 
submitted to the 2006 International Conference on Distributed Computing in Sensor 
Systems. 

We generalize a Hidden Markov Process  { } ∞
=0nnS  to be a process defined by  

( )[ ]ZKkTPS k ,,,2,1,, K= , where S and Z are sets of possible states and measurement 
outcomes respectively, P is a transition probability matrix, and ( )KkT k ,,2,1 K= are 
observation probability matrices. In contrast to the usual hidden Markov process [Eph] 
which has only one observation probability matrix, here the measurement nZ  at time n is 
related to the state nS  through the observation probability matrix nkT which varies with 
time index n. The aim is to find an optimal policy to chose the measurement sensor nk  
(based on state estimate at time n) which provides the best observability of the states in 
the long run. This problem arises in applications for optimal usage of a set of sensors for 
observation of a Markov process where the system or the resource management allows 
only one sensor usage at a time. For example, in a radar system only one waveform out of 
a set can be used at each pulse transmission. 

We denote ∆ as the space of probability measures on the state space S and ( )∆P  as 
the space of probability distributions on ∆. The information state nπ  as a random variable 
on ∆, defined by ( ) ( )11 | −− = n

n
n

n ZSpZπ , is a sufficient statistics for all the past 
measurements in relation to state estimation and is the basis for selecting sensors. 
Therefore a partitioning of ∆ can be considered as a policy for sensor selection where we 
consider our selection based on state estimation through recursive update of ∆∈π from  

( ) ( )
( )1zD

PzDzf k
n

k
n

n
k

n π
πππ ==+ ,1                                                                    (1) 

In                                                                    (1), ( )zD k  is a diagonal matrix with 
( ) [ ]ziTzd k

ii ,= , Si ,,1 K= . The problem of finding the best policy has two major thrusts, 
defining a proper criterion by which a policy τ is assessed, and solving the optimization 
problem over different policies. Our achievements in these two parts are as follows. 

Assessing policies 
The entropy rate of a process is a measure of average information that each 

symbol carries. For a hidden Markov process the entropy rate is defined as 
( )1|lim −

∞→

n
nn

ZZH . Integral expressions for evaluating this entropy rate have been obtained 

in [Blkwell] and [Reza]. This entropy rate represents the ambiguity of the next 
measurement considering all past measurements which incorporates both uncertainty 
about state and the measurement noise in the next step. In order to have the best 
observability of the state we consider a measure which indicates uncertainty of state 
estimation from past measurements, and hence a suitable criterion for our scheduling 
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would be the limiting conditional entropy ( )1|limˆ −

∞→
= n

nn
ZSHH . By a method similar to 

[Reza], we have obtained an integral expression for ( )τĤ  

( ) ( ) ( )∫
∆

= ππµπτ τ dˆ hH                                                                       (2) 

where ( )⋅h  is the entropy function and ( )∆∈ Pτµ  is the stationary distribution of the 
Markov process { } ∞

=0nnπ . The dynamics of this Markov process is governed by                              
(1) where k is selected according to the policy τ. The stability of this Markov process 
[Tweem] is crucial in obtaining τµ and applicability of                             
(2) which is still an open question. This stability ensures that there exists an operator Φ 
such that 

( ) ( )µµ ττ n

n
Φ=

∞→
lim                                                                     (3) 

 for any ( )∆∈ Pµ . 

Optimal policy 
We define a set of maps from ∆ to ( )∆P  as: 

( ) ( ) ( )( )∑=
z

k
z

kk zfT πδππφ ,  

for Kk ,,2,1 K= , where ( )πδ  is a point in ( )∆P  representing the probability distribution 
with all probability mass at π. The operator τΦ  in                              
(3) will be the integral of kφ  over ∆ where in each region the index k is selected 
according to the policy τ. Based on                                                                     (3) we 
have shown that the solution to the minimization problem 

( )ττ
τ

Ĥlimarg* =  

is 
( )

{ }
( )( )πφπτ j

Kj
h

,,2,1

* limarg
K∈

=  

where 
( )( ) ( ) ( )( )∫

∆

= uuhh kk πφπφ d  

This solution shows that the optimal policy can be found only by evaluating a set of 
functions ( )( ),πφ jh  Kj ≤≤1 over the domain ∆, and assigning to each region a sensor 
corresponding to a value k which gives the minimum of the functions ( )( )⋅jh φ  over index j. 

Scheduling for IMM Filters 

We assume that the dynamic models and the sensor measurement processes are 
linear and described by the following equations 

( ) ( )Θ+Θ= − vxFx 1kk  
( )φwHxz += kk  

where the dynamic model Θ is a discrete random variable, which at time k can take any 
value M,,1K  and N,,1K=φ  is the waveform used to obtain the measurements at time k. 
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A finite number of waveforms is considered. These waveforms form a library, as 
described in [SHME]. We write kx  for the state of the track and kz  for the measurement 
at time k. The matrices ( ) ( )MFF ,,1 K  are the state propagation matrices for the different 
maneuvers, H is the measurement matrix. Process noise is denoted by ( ) ( )Mvv ,,1 K  and 
measurement noise by ( ) ( )Nww ,,1 K . These are all zero mean, white, and uncorrelated 
Gaussian noise sequences with covariance matrices ( ) ( )MQQ ,,1 K  and ( ) ( )NRR ,,1 K  
respectively. 

We assume that changes in target trajectory can be modeled as a Markov Chain 
with given transitional probability matrix P, i.e. 

( ) [ ]MjiijP kkji ,1,| 1, ∈=Θ=Θ= −P  

The trajectory of the target can be described at any time by one of the M dynamic models. 
The tracker switches modes between the dynamic models using the measurements, and 
thus facilitates tracking of maneuvering targets. Our problem is to choose the waveform 
which will minimize the entropy rate of dynamic model. We do this using a similar 
process to that used in Section 0 for scheduling of a hidden Markov process. 

We denote the information state of the model at time k by ( ) ( )jP1| =Θ=− kkk jµ  for 
Mj ,,1K= . The likelihood function for a measurement given each model is 

( ) ( )1,ˆ,|ZP −=Θ==Λ k
kkj j Zxzzφ  

( )
( ) ( )( ) 






 −−−= −

−
−

T
kkkkkk j

j
1|

1
1| ,ˆ

2
1exp

|,|2
1 HxzSxHz
S

φ
φπ

 

where 
( ) ( ) ( )φφ RHHPS += −

T
kk jj 1|,  

is an innovation covariance matrix. We note, that S explicitly depends on the waveform φ 
through the error covariance matrix ( )φR . 

The posterior pdf of Θ is calculated using Bayes rule: 

( ) ( ) ( )

( ) ( )∑
=

−

−

Λ

Λ
= M

i
kkki

kkkj
kk

i

j
j

1
1|

1|
|

µ

µ
µ

φ

φ

z

z
 

and ( )jkk|µ  also depends explicitly on the waveform φ. Then the prior pdf of Θ (i.e. the 
information state at time k+1) is just 

( ) ( )∑
=

+ =
M

i
kkjikk ij

1
|,|1 µµ P  

Using the notation from Section 0, we can write 
( )1||1 , −+ = kkkkk f µµ φ z  

where the measurements kz comes from an uncountable space. For a stationary policy 
{ }NBB ,,1 K=τ  we write 
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( ) ( ) ( )∑
=

−−+ ==
N

kkkkkkkk Bff
1

1|1||1 ,,
φ

φ
φτ χµµµ zz  

where ( ) ( )[ ]Mkkkkkk |1|1|1 ,,1 +++ = µµµ K  and ( ) ( )[ ]Mkkkkkk 1|1|1| ,,1 −−− = µµµ K  are vectors. The 
decision function in this context is 

( ) ( ) ( ) ( )( )∫∑
=

Λ=
M

i
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This explicitly suggests the our one-step ahead approach in the DASP paper [SHME] 
was, in this context, the optimum. 

In DASP paper [SHME] we simply approximated ( )ZP  by a single Gaussian but a more 
sophisticated method was developed for this work. It is described in [RSM]. 
2.A.5.c Tracking with Motes 

Enhanced Tracking Performance with Signal Amplitude Information of Sensor Networks 
In the last report, we presented a Virtual Measurement (VM) approach to the 

problem of tracking multi-target in a binary (motes) sensor network (see [WangMor]). In 
the VM approach, a set of activated sensor detections (with a binary measurement “1”) 
are mapped into a set of virtual measurements as if they were observed by a large sensor. 
The set of VMs can be straightforwardly fed into a classical multi-target tracker (MTT) 
for automatic multi-target tracking. A drawback of this method is that some VMs may 
have large variances when sensor nodes are sparsely distributed, which may cause large 
estimation errors. In this work, we have shown that the uncertainty of VMs that 
associated with 2 or more sensor detections can be reduced by using signal amplitude 
information. To enable this work, we assume that signal amplitude information from 
activated sensors is available to the base station (by transmitting an extra scalar number 
from each sensor to base station). 

For a single target1, received signal amplitude at the sensor is assumed to be 
exponentially decaying function of the relative distance between sensor and the target. In 
the absence of noise and calibration error, we can exactly localize the target location 
using the signal amplitudes detected by 3 or more sensors via a root finding algorithm. 
Even with the signal amplitudes detected by only 2 sensors, we can still calculate the 
location of the target at the direction in line between these two sensors. In the real world, 
these calculated locations come up as random variables and their uncertainties depend on 
the noise level (in terms of SNR) and sensor calibrations, etc. In the VM framework, 

                                                 
1 In the VM approach, an IASG (Independently Activated Sensor Group) is deemed to have been triggered 
by a single target. 
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these calculated locations are treated as alternative VMs. The MTT will use the VM with 
smaller uncertainty. 

Simulation results indicate that an improved tracking performance over the 
standard VM approach can be achieved by taking signal amplitude information into 
account when a detected signal of relatively high SNR is available. The proposed method 
is particularly useful when sensors of the network have large sensing ranges and sparse 
placement. 

The uncertainty reduction of a VM that is due to a single sensor detection via 
signal amplitude information, and a better variance approximation for the variance of the 
VM calculated using signal amplitude information is currently being investigated. Full 
details of this new algorithm can be found in [WangMus]. 

Extensions to UKF-based Mote Tracker 
An algorithm for tracking a target moving through a field of motes using a 

Gaussian mixture based approach was described in previous reports. This algorithm is 
based on using the unscented transformation to approximate the Kalman filter recursion. 
The algorithm was restricted to tracking a known number of targets with predictable 
dynamic behaviour, i.e., no maneuvers. This algorithm has been extended to include 
estimation of the target strength, target maneuvers and initiation of new tracks. Target 
strength is estimated by augmenting the target state to include a target strength parameter 
which is then recursively estimated along with the target kinematic parameters. Target 
maneuvers are handled by hypothesizing multiple motion models. The explosion in the 
number of possible motion model sequences is handled by pruning unlikely motion 
models at each time step. Interestingly, the popular interacting multiple model 
approximation seems to perform quite poorly with this model. Since mote detections 
signal the presence of targets, these are used to initiate new tracks. The validity of a track 
is measured by the probability of target existence which can be computed recursively as 
measurements are acquired. Tracks are confirmed as target tracks or deleted based on the 
existence probability. 

Comparison of Mote Tracking Algorithms 
Comparisons between the unscented Kalman filter (UKF) and another algorithm 

we have developed, the virtual measurement filter (VMF), have been performed. The 
algorithms assume different measurement models. The measurement model used by the 
UKF assumes that detection probability of a particular sensor decreases with target range 
while the model used by the VMF assumes that detection probability is fixed within the 
sensing range. Comparisons are performed with both measurement models to ensure 
equity. When a filter is used with a mis-matched measurement model it is necessary to 
select appropriate parameters for the measurement model assumed by the filter. Let p(r;θ) 
denote the detection probability for a target at a distance r from the sensor. The detection 
probability is parameterized by the vector θ. Assume that data is generated according to 
q(r). We then select the parameter θ as  

[ ]∫ ==∗ R
qpdrrp

0

2 )0();0( subject to  q(r)-);(max arg θθθ
θ

 

To give an example, suppose that data is generated according to the model assumed by 
the VMF. Here 



ISP Phase II (Contract N00014-04-C-0437) 
Quarterly Progress Report (CDRL A001 No. 4) 

 

 44



 ≤

=
otherwise.,0

,,
)(

SrP
rq D  

where PD is the detection probability and S is the sensing range. The UKF assumes a 
model of the form 
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where Φ is the distribution function of a standard Gaussian random variable and Γ is a 
threshold. Here θ=(τ,A). According to the given criterion we set 

( )DPA −Φ−Γ= −∗ 11  

and select τ to minimize the 
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An example of this fitting procedure is given in Figure 26 for a detection probability of 
PD=0.7 and a sensing range of S=10. 
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Figure 26: Detection probability plotted against target range for the UKF measurement 
model p (solid) and the VMF measurement model q (dashed). 

The simulation set-up follows. The observation region is 120m x 120m containing 
100 motes arranged on a rectangular grid. A range of sensor parameters is considered. In 
particular, data is generated according to the VMF model with all combinations of the 
detection probabilities PD = 0.5, 0.7, 0.9 and sensing ranges S = 5m, 10m and 15m. For 
each combination of PD and S, data is generated using the UKF measurement model with 
parameters τ and A calculated as described above. Thus there are 18 data sets in total, 9 
for each measurement model. The target moves with a velocity subject to low intensity 
Brownian motion. The algorithms begin with no knowledge of the location or number of 
targets. Tentative tracks are deemed true or false depending on their proximity to ground 
truth. A tentative track is confirmed once the existence probability, discussed above, 
exceeds a threshold. The aim is to confirm the true target track as quickly as possible and 
maintain while minimizing the number of confirmed false tracks.  

The algorithm performances over 100 realizations are summarized in Table 9 to 
Table 12. Table 9 and Table 10 show the results for measurements generated according 
to the model p(r) defined above. Table 9 shows the mean number of true track 
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confirmations averaged over time and measurement realizations. This number should be 
as close to one as possible. Table 10 shows the mean number of false track confirmations 
averaged over time and the measurement realizations. This number should be close to 
zero. Table 11 and Table 12 display the same information for measurements generated 
according to q(r). Each cell of the tables shows results for both the UKF and the VMF 
with the UKF results on the left. In all of the scenarios considered here the UKF 
outperforms the VMF, in terms of both the number of true tracks confirmed and the 
number of false tracks confirmed. With the exception of the case where PD=0.5, S=5, the 
mean number of confirmed true tracks is close to one indicating that the true target track 
is quickly found and maintained. Also, no false tracks are confirmed. Only a slight drop 
in performance can be observed when measurements are generated with a mis-matched 
measurement model (recall that the UKF assumes a measurement model of the form 
described by p). Interestingly, in some cases the VMF performs better with a mis-
matched measurement model, e.g., when the detection probability is 0.5 and the sensing 
range is 5.  

Table 9: Mean number of confirmed true tracks for the UKF (left) and VMF (right) 
trackers. Data is generated using p. 

Sensing Range 
PD 5 10 15 
0.5 0.65 0.23 0.93 0.55 0.97 0.81 
0.7 0.86 0.64 0.96 0.83 0.97 0.83 
0.9 0.91 0.79 0.98 0.83 0.98 0.88 

Table 10: Mean number of confirmed false tracks for the UKF (left) and VMF (right). 
Data is generated using p. 

Sensing Range 
PD 5 10 15 
0.5 0 0 0 0.02 0 0.01 
0.7 0 0.01 0 0.01 0 0.01 
0.9 0 0.01 0 0 0 0 

Table 11: Mean number of confirmed true tracks for the UKF (left) and VMF (right). 
Data is generated using q. 

Sensing Range 
PD 5 10 15 
0.5 0.64 0.13 0.93 0.59 0.97 0.78 
0.7 0.84 0.57 0.97 0.83 0.98 0.81 
0.9 0.88 0.77 0.98 0.88 0.96 0.88 

Table 12: Mean number of confirmed false tracks for the UKF (left) and VMF (right). 
Data is generated using q. 

Sensing Range 
PD 5 10 15 
0.5 0 0 0 0.10 0 0.02 
0.7 0 0 0 0.38 0 0.03 
0.9 0 0 0 0.83 0 0.04 
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The comparison performed here is limited in the sense that the target follows a straight 
line trajectory and only one target is considered. The comparison will be extended to 
consider initiation and tracking of multiple maneuvering targets. 

Scheduled Tracking with Motes 

In previous reports a single-target tracking algorithm using binary proximity 
sensors was described, where some sensors may be inoperative. Conventional methods 
assume all motes in the surveillance region are functioning. These trackers therefore 
assume that the lack of a target detection means that the target is not near the sensor, 
leading to biases in the track estimates. To track robustly with such sensors it is necessary 
for the central processor to know which motes in the surveillance region are functioning. 
The tracker described previously, called the Health Tracker, simultaneously estimates 
the target track and also the probability each mote in the surveillance region is 
operational. This algorithm is robust to sensor failures and gives improved track accuracy 
over conventional trackers. A complete description of the algorithm is given in 
[LaSMoreSav] and will be presented at the IEEE Conference on Acoustics, Speech and 
Signal Processing (ICASSP) in Toulouse, France in June 2006. 

This tracking approach has been extended to consider the case when the central 
processor can either listen for detections from the sensors or else query a particular mote 
to determine if it is operative. Querying a mote for its status results in a loss of 
information from the other motes, but certain information about the selected mote. This 
raises the question of when to schedule a mote query and which mote to select. Recent 
work investigated two such scheduling methods. One method was based on a ad hoc cost 
function while the other considered the expected cost trade-off. Simulation results show 
that both methods provide a moderate improvement in track accuracy compared to the 
basic Health Tracker approach and a significant decrease in computational complexity. 
A full description of this work is given in [LaS], which has been submitted for 
presentation at the 9th International Conference on Information Fusion in Florence, Italy 
in July 2006. 

2.A.5.d Particle Filter Tracker for EKV 
A model of the EKV problem has been formulated and a solution based on 

particle filtering has been developed. The EKV problem involves guiding one exo-
atmospheric missile into another exo-atmospheric missile. The problem is complicated by 
the fact that the target missile deploys decoys. The goal is to ignore the decoys and focus 
on the target. An onboard algorithm is capable of classifying, with some degree of error, 
the various objects as targets or decoys.  

The problem is mathematically described using a stochastic dynamic system. The 
state contains the positions of all objects in spherical coordinates with respect to some 
inertial frame of reference. The state also contains a discrete-valued variable which 
assumes the value of the object deemed to be the target. At each time step the missile 
provides object measurements in its own frame-of-reference. Each measurement is 
provided with a [0,1]-valued variable indicating the probability that it was generated by 
the target. The missile has a certain field-of-view (FOV) which must be manipulated, 
through the application of accelerations in directions orthogonal to the line between the 
missile and the target, to ensure that the target remains in the FOV. Clearly, as time goes 
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by the number of objects in the FOV will decrease and it is of particular interest that the 
target be in the FOV as the missile nears the target. The measurement model allows for 
uncertainty regarding the origin of each measurement, i.e., we don’t know which 
measurement is due to which object. 

It is proposed to select the acceleration inputs to maximize the probability that the 
target is in the FOV. Calculation of this probability requires knowledge of the joint 
posterior density of the state and the target indicator variable. Since this cannot be 
computed exactly it is proposed to use a particle filter (PF) to approximate it. The main 
problem is that the PF cannot be used to perform inference on static variables such as the 
target indicator. We therefore suggest using a PF to approximate only the density of the 
state conditional on the measurements. This results in a number of state trajectories. The 
posterior distribution of the target indicator variable can then be computed conditional on 
each state trajectory and the measurement history. The statistics required for the selection 
of the acceleration input can then be approximated. This filter will be implemented and 
tested using simulated data in the near future. 

2.A.5.e Other Tracking Algorithms 

Measurement Gaussian Sum Mixture Target Tracking 
Details of this work are given in [MusEvans], which has been submitted to the 9th 

International Conference on Information Fusion (pending approval from the DARPA ISP 
project office). This method applies to target tracking when the measurement probability 
density function may be described or approximated by a Gaussian Mixture. Both single 
scan tracking (IPDA) and multi scan tracking (ITS) using this model are described. 
Extension to multi-target tracking via the Linear Multitarget procedure is straightforward, 
however it is not part of the submission. 

Certain measurement non-linearities can be efficiently modeled as a Gaussian 
sum, and in these situations this tracker may present a viable alternative to using 
extended Kalman filter, particle filter or unscented Kalman filter. The paper itself 
describes 3 such situations: 

a) Tracking using acoustic signals with just two sensors; using signal amplitudes; 
b) Tracking using acoustic signal with just two sensors, using both signal 

amplitude and time difference of arrival; and  
c) Tracking using long range radars. 

Situations a) and b) are relevant to the problem of tracking with motes. Time 
difference of arrival results in a similar measurement curve to the measurement function 
in scenario a). Passive radar sensors also have a measurement function that is 
significantly nonlinear. Future work will include investigating if these nonlinearities can 
be adequately modeled by a Gaussian sum, making this tracker relevant to such 
applications also. Application c) corresponds to long range radar, which may be used to 
track TBM at significant distances. 

Tracking a Large Number of Targets in Clutter with Particle Filter 
This work is described in [MusMore], which has been submitted to the European 

Signal Processing 2006 conference, (also pending approval from the DARPA ISP project 
office). It describes tracking a large number of targets simultaneously (50 targets) using 
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particle filters. The particle filter is obtained by applying Linear Multitarget method to 
the particle filter implementation of IPDA, previously published at the IEEE Conference 
on Decision and Control (CDC 2005) in Seville, Spain in December 2005. 

The resulting algorithm is computationally efficient, at least compared to other 
particle filter implementations, and can be potentially applied for real-time target 
tracking. The majority of papers published on target tracking with particle filters 
demonstrate their performance on a small number of targets, typically as low as two or 
three. An additional benefit of this tracking algorithm is its ability to incorporate 
nonlinear target motion and measurement models due to the use of a particle filter. A 
tracking algorithm with these features is a necessary tool on which to base scheduling 
algorithms for problems such as sensor scheduling for swarms. 

2.A.5.f Distance Preserving Projections 
In [LaSMor] the problem of computing waveform measures of effectiveness was 

discussed. When performing waveform scheduling it is necessary to have some method 
for evaluating the effectiveness of any given waveform in the current environment. Four 
properties that such measures should satisfy were proposed. These were: 

1. The measure should be rigorous, so it can be scientifically validated. 
2. The measure should be computable. 
3. The measure should be based on the total ambiguity of the waveform. 
4. The measure should take into account the clutter distribution. 

In [LaSMor] a minimum variance measure, the MVMoE, was proposed which 
satisfies properties 1, 3 and 4. A method for computing it was also given but it was 
computationally complex. To avoid the computational complexities it is proposed to 
investigate the use of distance preserving projections to determine if a more efficient 
means of computing the MVMoE can be found.  

Distance preserving projections, also known as random projections, are based on 
a result by Johnson and Lindenstrauss [JohnLin] which shows that it is possible to project 
points in a high dimensional space into a lower dimensional space in such a way that all 
pairwise distances between the points are maintained to within an arbitrarily small factor. 
The projection matrices that achieve this are generated by selecting the matrix elements 
from simple random distributions. Examples of such projection matrices are given in 
works such as [Ach]. 

These projections may prove an effective means of calculating the MVMoE. The 
raw measurement used in the MVMoE is a vector of size MN where M is the number of 
range cells and N is the number of Doppler cells. For practical problems this vector is in a 
very high dimensional space. The evaluation method described in [LaSMor] required 
calculating the singular value decomposition of each waveform’s ambiguity function to 
map this raw measurement vector to a lower dimensional space in order to compute the 
measure of effectiveness for each waveform. The use of random projections to perform 
this mapping should provide significant computational savings while preserving the 
relative value of the measure for each waveform. 
2.A.5.g Sensor Scheduling for AT3 Applications 

In this project we are examining sensor scheduling methods for geolocation of 
ground-based emitters using passive, airborne sensors. The initial scenario considered has 
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a number of simplifying assumptions that will be relaxed in later work. A description of 
the initial problem scenario is given below. 

The targets are stationary, ground-based emitters operating at fixed, distinct 
frequencies. Each emitter is a phased-array radar whose boresight is fixed for the duration 
of the engagement. The passive sensors are mounted on airborne platforms, with known 
locations. Target geolocation is performed using time difference of arrival (TDOA) 
techniques. We assume that there is no pulse ambiguity and all the sensors are time 
synchronized. In this initial scenario, we assume that the receivers are evenly spaced 
around the perimeter of the region of interest and do not move significantly. That is, they 
may circle around some predetermined point but do not move noticeably in relation to the 
other sensors or the target. This assumption will be relaxed in later scenarios. 

The sensors are assumed to be sufficiently sensitive that they are able to detect 
pulses from the emitters when they are in the sidelobes and backlobe of an emitter. A 
simple model for the probability of pulse detection, DP , as a function of angle from 
boresight with three levels will be used – high DP  when near boresight; moderate DP  
when further off boresight; and low DP  when the sensor is behind the emitter. The 
scheduling algorithms will be designed so they do not depend on the specific properties 
of the pulse detection model. 

The sensors are assumed to be able to detect pulses over a wide frequency band – 
wide enough that all possible emitters can be detected. The sensors are assumed to be 
able to operate in one of two modes – surveillance mode and tracking mode. In 
surveillance mode the sensor is able to detect pulses on a relatively wide frequency band 
but the TOA measurement is relatively inaccurate. In tracking mode the detection range 
is narrower and the TOA accuracy higher. 

It is assumed that some a priori knowledge of the number of emitters, their 
operating frequency and their location is available. The scheduling problem is then to 
determine which sensors should listen on what frequency band and in which mode in 
order to geolocate all the emitters are accurately as possible. Note, the emitters are not 
necessarily transmitting at all times during the engagement. Initially, myopic (i.e. greedy) 
scheduling algorithms will be developed, but we will also consider if more sophisticated 
schedulers can be designed for this problem given its particular structure. 
2.A.5.h Scheduling for Passive Radar Sensors 

This evaluation involves tracking stationary or slow moving (ground based) radar 
sources using UAVs, which measure Time Difference of Arrival (TDOA) of radar 
signals. Based on the TDOA values, the location of the radar can be estimated and 
tracked. For a 2 D situation, such as when tracking ground emitters, at least 3 UAVs are 
necessary. It is assumed that the UAVs may receive radar signal from the main beam, 
which is 1 degree wide, as well as from sidelobes. The radar antenna pattern will be 
approximated by assuming that, when not in the radar main beam, the radar signal is 
received 20% of the time. Each radar is assumed to have different carrier frequency, thus 
the signal origin is unambiguous. It is also assumed that the distance between the UAVs 
is smaller than the radar maximum range, thus there will be no pulse to pulse ambiguity.  

The UAVs communicate using low frequency link, and the radar emits pulses 
with frequency of 5 kHz (medium range radar). Information about all pulses received can 
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not be transmitted. Thus the scheduling issue is the choice of the subset of received 
pulses, whose transmit time of arrival will be transmitted. The corresponding issue is the 
estimate of the radar position, given the received data from all UAVs.  

2. B. Publications  
There were no refereed publications that occurred during the current PoP. 

1. Craig O. Savage and Bill Moran, “Waveform Selection For Maneuvering Targets 
Within An IMM Framework,” IEEE Trans AES, accepted for publication.  

2. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, ``Non-myopic sensor 
scheduling and its efficient implementation for target tracking applications,'' 
EURASIP Journal on Applied Signal Processing, to appear 2006. 

3. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, ``On the use of binary 
programming for sensor scheduling,'' IEEE Transactions on Signal Processing, 
submitted February 2006. 

2. C. Conference Proceedings 
1. I. Kyriakides, D. Morrell and A. Papandreou-Suppappola, “Sequential Monte Carlo 

methods for tracking multiple targets with stochastic kinematic constraints,” invited 
to the First IEEE International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing, Puerto Vallarta, Mexico, December 2005. 

2. W. Moran, C. O. Savage, S. Suvorova, H. A. Schmitt, D. E. Waagen and R. Cramer, 
“Dynamic Positioning and Scheduling of UAVs for Passive Geolocation,” Session on 
cooperative dynamic systems, 2006 IEEE International conference on Networking, 
Sensing and Control, Ft. Lauderdale, FL, April 2006, accepted for publication. 

3. S. Sira, A. Papandreou-Suppappola and D. Morrell, “Characterization of waveform 
performance in dynamically configured sensor systems,” invited to the International 
Waveform Diversity and Design Conference, Kauai, Hawaii, January 2006.  

4. R. Raich, J. A. Costa, and A. O. Hero III, “On Dimensionality Reduction for 
Classification and Its Application,” 2006 IEEE International Conference on 
Acoustics, Speech and Signal Processing, submitted. 

5. B. F. La Scala, M. Morelande, C. O. Savage, “Robust Target Tracking with 
Unreliable Binary Proximity Sensors,” IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP 2006), submitted. 

6. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, “On the use of linear integer 
programming for sensor scheduling in sensor networks,” submitted to the 5th 
International Conference on Information Processing in Sensor Networks, Nashville, 
TN, April 2006. 

7. C. Vossberg, A. Swain, S. Bellofiore, B. Manjunath, D. Chakraborty, A. Chhetri, D. 
Morrell and A. Papandreou-Suppappola, ``Sensor network prototype for tracking and 
scheduling with minimum resources,'' submitted to the IEEE Workshop on Sensor 
Array and Multi-channel Processing, July 2006. 
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8. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, ``Sensor scheduling using 0-1 
mixed integer programming framework,'' submitted to the IEEE Workshop on Sensor 
Array and Multi-channel Processing, July 2006. 

2. D. Consultative and Advisor Functions 
There were two consultative or advisory functions that occurred during the 

current PoP. The first relates to a Raytheon Shooter Localization demonstration using the 
MICA-2/Z sensor nodes. This work is being funded under the DARPA IXO NEST Phase 
II program. The Phase I shooter localization algorithms were developed by VU. 
Preliminary results indicated that the shooter localization algorithm has significant 
potential. The program was subsequently classified and was ultimately transitioned to 
Raytheon for demonstration and refinement under Phase II. The DARPA IXO Program 
Manager has kindly given permission for several of these algorithms to be used in our 
ISP Phase II program. The Raytheon NEST program has identified a critical need for the 
development of an accurate sensor localization algorithm that is scalable to hundreds or 
thousands of nodes. Indeed, the DARPA NEST program hopes to demonstrate a 10,000 
node network. We have identified and are evaluating several promising mathematical 
approaches to sensor localization developed by Al Hero (UM); these will be made 
available to the Raytheon NEST program if they are successful. Thom Steven and Sal 
Bellofiore support the DARPA ISP II and DARPA NEST programs, and, more generally, 
the two programs are developing a strong collaboration.  

The second function relates to optical flow test facility at Eglin, Air Force Base. 
Raytheon and Georgia Tech have had preliminary discussion with Dr. T.J. Klausutis of 
Eglin AFB about the possibility of using their facility to evaluate the Georgia Tech 
CADSP imager being investigated on our ISP Phase II program. While these discussions 
are preliminary, Dr. Klausutis was interested in learning more about the capabilities and 
maturity of the CADSP Imager and plans to visit Georgia Tech.  

2. E. New Discoveries, Inventions or Patent Disclosures 
There were no patent disclosures filed during the current PoP. 

2. F. Honors/Awards  
There were no honors or awards received during the current PoP. 

2. G. Transitions.  
There were no technology transitions achieved during the current PoP. 
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2. I. Acronyms 
ADTS    Advanced Detection Technology Sensor 
ASU    Arizona State University 
ATA    Automatic Target Acquisition  
AVU     Algorithms Verification Units  
CADSP    Cooperative Analog Digital Signal Processor 
CCDR    Classification Constrained Dimensionality Reduction 
 CRB    Cramér–Rao Bound 
CROPS   Classification Reduction Optimal Policy Search 
DARPA   Defense Advanced Research Projects Agency 
DSA    Distinct Sensing Area 
dwMDS    Distributed, weighted, multi-dimensional scaling 
 FPA    Focal Plane Array 
FMAH    Fast Mathematical Algorithms and Hardware  
GEM    Geometric Entropy Maps 
Georgia Tech    Georgia Institute of Technology  
GPS    Global Positioning System 
IASG    Independently Activated Sensor Group 
ISP     Integrated Sensing and Processing 
IXO    Information Exploitation Office 
kNN    k-Nearest Neighbor  
LEAN    Laplacian Eigenmap Adaptive Neighbor 
LIP     Linear Integer Programming 
MC    Monte-Carlo 
MTT    Multi-target tracking 
NEST    Networked Embedded System Technology 
NLIP    Nonlinear Integer Programming 
NLOS     NetFires Non-Line of Sight  
NUC    Non-Uniformity Compensation 
ONR     Office of Naval Research 
PAM     Precision Attack Munition 
PDA    Probabilistic Data Association  
PWF    Polarization Whitening Filter 
PoP     Period of Performance 
RIM    Radio Interferometric Measurements 
RIPS    Radio Interferometric Positioning 
RISCO    Raytheon International Support Company  
RSS    Received Signal Strength 
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TDOA    Time Difference of Arrival 
TIM     Technical Interchange Meeting 
UAV     Unmanned Aerial Vehicle 
UCIR     Uncooled infrared imaging 
UM    University of Michigan 
UniMelb    Melbourne University 
VM    Virtual Measurement 
VU    Vanderbilt University 

 


